

Contents

- Introduction
 - protocols and layered architecture
 - encapsulation
 - interconnection structures
 - performance

2

Internet protocol stack Application: supporting network applications Application FTP, SMTP, HTTP, OSPF, RIP Transport **Transport**: host-host data transfer TCP, UDP Network Network: routing of datagrams from source to destination Link • Link: data transfer between neighboring Physical network elements PPP, Ethernet Physical: bits "on the wire"

Ethereal Transmission Control Protocol, Src Port: 34303 (34303), Dst Port: 6000 (6000), Seq: 4292988915, Ack: 3654747642, Len: 1448 Source port: 34303 (34303) Destination port: 6000 (6000) Sequence number: 4292988915 Next sequence number: 4292998915 Next sequence number: 4292990363 Acknowledgement number: 3654747642 Header length: 32 bytes Flags: 0x0010 (ACK) Window size: 41992 Checksum: 0x9abe (correct) Options: (12 bytes)

Interconnection

Interconnection at layer 2

- Switches (bridges)
 - interconnect hosts
 - logically separate groups of hosts (VLANs)
 - managed by one entity
- Type of the network
 - broadcast
- Forwarding based on MAC address
 - flat address space
 - forwarding tables: one entry per host
 - works if no loops
 - · careful management
 - · Spanning Tree protocol
 - not scalable

20

Interconnection at layer 3

- Routers
 - interconnect subnetworks
 - logically separate groups of hosts
 - managed by one entity
- Forwarding based on IP address
 - structured address space
 - routing tables: aggregation of entries
 - works if no loops routing protocols (IGP Internal Routing Protocols)
 - scalable inside one administrative domain

Protocol architecture 5 Application Application L3 PDU Transport (IP packet) 3 LLC LLC LLC 2 MAC MAC Physical Physical (MAC Frame) • Routers are layer 3 intermediate systems **Explicit forwarding** host has to know the address of the first router Management protocols (control, routing, configuration)

Interconnection of AS

- Border routers
 - interconnect AS
- NAP or GIX, or IXP
 - exchange of traffic peering
- Route construction
 - based on the path through a series of AS
 - based on administrative policies
 - routing tables: aggregation of entries
 - works if no loops and at least one route routing protocols (EGP - External Routing Protocols)

Performance

28

Performance - Motivating example

- Consider this real-life example of a large bank with headquarters in Europe and operations in North America.
- Problem: a business unit with European users trying to access an important application from across the pond.
- Performance was horrible (response time).
- CIO ordered his trusted network operations manager to fix the problem. The network manager dutifully investigated, measuring the transatlantic link utilization and router queue statistics: no problems with the network, as it was only 3 percent utilized.
- "I don't care, double the bandwidth!" the CIO ordered. The network manager complied, installing a second OC-3 link. And, guess what?
- The network went from 3 percent to 1.5 percent utilized, and application performance was still horrible. That CIO didn't know jack about network performance.

Performance

27

- Bit Rate (débit binaire) of a transmission system
 - bandwidth, throughput
 - number of bits transmitted per time unit
 - units: b/s or bps, $kb/s = 1000 \ b/s$, $Mb/s = 10e+06 \ b/s$, $Gb/s=10e+09 \ b/s$
 - OC3/STM1 155 Mb/s, OC12/STM4 622 Mb/s, and OC48/STM-16 - 2.5 Gb/s, OC192/STM-48 10 Gb/s
- Latency or Delay
 - time interval between the beginning of a transmission and the end of the reception
 - RTT Round-Trip Time

Performance

- Latency
 - Latency = Propagation + Transmission + Wait
 - Propagation = Distance / Speed
 - copper : Speed = 2.3x10⁸ m/s
 - glass : Speed = 2x10⁸ m/s
 - Transmission = Size / BitRate
- 5 μs/km
- New York Los Angeles in 24 ms
 - request 1 byte, response 1 byte: 48 ms
 - 25 MB file on 10 Mb/s: 20 s
- World tour in 0.2 s

Example

 At time 0, computer A sends a packet of size 1000 bytes to B; at what time is the packet received by B (speed = 2e+08 m/s)?

distance	20 km	20000 km	2 km	20 m
bit rate	10kb/s	1 Mb/s	10 Mb/s	1 Gb/s
propagation	0.1ms	100 ms	0.01 ms	0.1μs
transmission	800 ms	8 ms	0.8 ms	8 μs
latency	?	?	?	?

modem satellite LAN Hippi

33

35

Example

 At time 0, computer A sends a packet of size 1000 bytes to B; at what time is the packet received by B (speed = 2e+08 m/s)?

distance	20 km	20000 km	2 km	20 m
bit rate	10kb/s	1 Mb/s	10 Mb/s	1 Gb/s
propagation	0.1ms	100 ms	0.01 ms	0.1μs
transmission	800 ms	8 ms	0.8 ms	8 μs
latency	800.1 ms	108 ms	0.81 ms	8.1 μs

modem satellite LAN Hippi

Bandwidth-Delay Product

- Bandwidth-Delay product
 - how many bits should we send before the arrival of the first bit?
 - good utilization keep the pipe filled!

36

A Simple Protocol: Stop and Go

- Packets may be lost during transmission: bit errors due to channel imperfections, various noises.
- Computer A sends packets to B; B returns an acknowledgement packet immediately to confirm that B has received the packet;

A waits for acknowledgement before sending a new packet; if no acknowledgement comes after a delay $\mathcal{T}1$, then A retransmits

37

A Simple Protocol: Stop and Go

- Question: What is the maximum throughput assuming that there are no losses? notation:
 - packet length = L, constant (in bits);
 - acknowledgement length = I, constant
 - channel bit rate = b;
 - propagation = D
 - processing time = 0

38

Solution (2)

distance	20 km	20000 km	2 km	20 m
bit rate	10kb/s	1 Mb/s	10 Mb/s	1 Gb/s
propagation	0.1ms	100 ms	0.01 ms	0.1µs
transmission	800 ms	8 ms	0.8 ms	8 µs
reception time	800.1 ms	108 ms	0.81 ms	8.1 µs
	modem	satellite	LAN	Hippi
$\beta = 2 Db$	2 bits	200 000 bits	200 bits	200 bits
throughput = bx 99.98%		3.8%	97.56%	97.56%

propagation
 bandwidth d

Performance transmission

Summary

Network architecturesprotocol architectures

interconnection structure
 switches, routers
 related protocols
 complex protocol families

different protocol stacks, overlaid stacks

bandwidth-d ela y product

• queueing delay