

Prof. Andrzej Duda duda@imag.fr

http://duda.imag.fr

1

3

5

Interconnection structure - layer 3

Interconnection structure - layer 2

Interconnection at layer 2

- Switches (bridges)
 - interconnect hosts
 - logically separate groups of hosts (VLANs)
 - managed by one entity
- Type of the network
 - broadcast
- Forwarding based on MAC address
 - flat address space
 - forwarding tables: one entry per host
 - works if no loops
 - careful management Spanning Tree protocol
 - not scalable

Protocol architecture

- Switches are layer 2 intermediate systems
- Transparent forwarding
- Management protocols (Spanning Tree, VLAN)

IEEE 802.3 - Ethernet

4

6

Random Access protocols

- When node has packet to send
 - transmit at full channel data rate R.
 - no a priori coordination among nodes
- two or more transmitting nodes -> "collision",
- random access protocol specifies:
- how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- Examples of random access protocols:
 - ALOHA, slotted ALOHA
 - CSMA, CSMA/CD (Ethernet), CSMA/CA (802.11)

CSMA/CD (Collision Detection)

- CSMA/CD (Carrier Sense Multiple Access/ Collision Detection)
 - carrier sensing, deferral if ongoing transmission
 - collisions detected within short time
 - colliding transmissions aborted, reducing channel wastage
 - persistent transmission
- collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: receiver shut off while transmitting

CSMA/CD algorithm

i = 1							
<u>while</u> (i <= maxAttempts) <u>do</u>							
listen until channel is idle							
transmit and listen							
wait until (end of transmission) or							
(collision detected)							
(collision detected) <u>if collision detected then</u> stop transmitting, send jam bits (32 bits)							
stop transmitting, send jam bits (32 bits)							
<u>else</u>							
wait for interframe delay (9.6 μ s)							
leave							
wait random time							
increment i							
end do							

CSMA / CD Collision

10

8

CSMA / CD Jam Signal

Random retransmission interval

 $r = random (0, 2^{k} -1)$ k = min (10, AttemptNb) $t_{r} = r \times 51.2 \,\mu s, \quad r \in [0, 2^{k} -1]$ • slot time = 51.2 μs • 1st collision, r = 0, 1• 2nd collision, r = 0, 1, 2, 3• 10th, r = 0, 1, ..., 1023• 15th, stop

7

CSMA / CD Retransmission

Retransmission interval

Round trip time

- limits the interval during which collisions may occur Slot

45 μs + 3.2 μs < 51.2 μs (512 bits)

- channel is acquired after 51.2 μs
- non-valid frames (results of collisions) < 512 bits
- minimal frame size (data field ≥ 46 bytes)
- unit of the retransmission interval

Frame format (Ethernet v.2)

	preamble	dest	source	type	data	CRC		
	8 bytes	6 bytes	6 bytes	2 bytes	46 - 1500 bytes	4 bytes		
•	Preamble synchronization : 101010100101011							
•	Addresse							

- unique, unicast and multicast (starts with the first bit 1)
- broadcast: 11111...11111
- Type
 - upper layer protocol (IP, IPX, ARP, etc.)

15

Addressing

14

- MAC address: 48 bits = adapter identifier
- sender puts destination MAC address in the frameall stations read all frames; keep only if destination
- address matches
- all 1 address (FF:FF:FF:FF:FF) = broadcast

16

Addressing

- Data on Ethernet is transmitted least significant bit of first byte first (a bug dictated by Intel processors)
- Canonical representation thus inverts the order of bits inside a byte (the first bit of the address is the least significant bit of the first byte)
- examples of addresses:
 - 01:00:5e:02:a6:cf (a group address)
 - 08:00:20:71:0d:d4 (a SUN machine)
 - 00:00:c0:3f:6c:a4 (a PC)
 - 00:00:0c:02:78:36 (a CISCO router)
 - FF:FF:FF:FF:FF:FF the broadcast address

Repeaters

- Function of a simple, 2 port repeater:
 - repeat bits received on one port to other port
 - if collision sensed on one port, repeat random bits on other port
- One network with repeaters = one collision domain
- Repeaters perform only physical layer functions (bit repeaters)

From Repeaters to Hubs

- Multiport repeater (*n* ports), logically equivalent to:
 - *n* simple repeater
 connected to one internal Ethernet segment
- Multi-port repeaters make it possible to use point-to-point segments (Ethernet in the box)
 - ease of management
 fault isolation
 - fault isolat

10 BASE T Hubs

Bridges

- Bridges are intermediate systems, or switches, that forward MAC frames to destinations based on MAC addresses
- Transparent bridges: learn the Forwarding Table

21

Transparent Bridging (TB)

- Bridges are intermediate systems that forward MAC frames to destinations based on MAC addresses
- Interconnect systems beyond one LAN segment, keeping main characteristics of LAN
 - without additional addresses
 MAC addresses used to identify end systems
- End systems ignore that there are transparent bridges
 - bridge is transparent
 - MAC frames not changed by bridges
 - frames not sent *to* bridge, but rather: bridge is promiscuous
 - listens to all frames and retransmits if needed

22

20

Collision domains

- Bridges separate collision domains
 - a bridged LAN maybe much larger than a repeated LAN
 - there may be several frames transmitted in parallel in a bridged $\ensuremath{\mathsf{LAN}}$

Repeaters and Bridges in OSI Model

- Bridges are layer 2 intermediate systems
- · Repeaters are in layer 1 intermediate systems
- Routers are layer 3 intermediate systems (IP routers)

Protocol architecture

- Routers are layer 3 intermediate systems
- Explicit forwarding
 - host has to know the address of the first router
- Management protocols (control, routing, configuration)

25

Switched Ethernet

- Switched Ethernet = bridge in the box
- Total bandwidth is not shared
 parallel frame transmission
- Half and full-duplex operation

Switching

- Store and forward
 - receive full frame, check if valid, retransmit
 - 50 μs delay for a 64 bytes frame
- Cut through
 - address read, retransmit at line speed
 - 14 bytes read and decision made on output link
 - if link busy, defaults to store and forward
 - 20 μs delay for a 64 bytes frame
 - transmission of non-valid frames
 - CRC check at end of forwarding
- Flow control

2

- back pressure using false collision notification
- on full duplex links, send PAUSE to hosts

VLAN - Virtual LAN

- Keep the advantages of Layer 2 interconnection
 - auto-configuration (addresses, topology Spanning Tree)performance of switching
- Enhance with functionalities of Layer 3
 - extensibility
 - spanning large distances
- traffic filtering
- Limit broadcast domains
- Security
 - separate subnetworks

Virtual LANs

- No traffic between different VLANs
- VLANs build on bridges or switches

<u>802.1Q</u>

- Frame encapsulation
 - extension for assigning frame priority and VLAN tag
 - t 2 bytes of TPI (Tag Protocol Identifier): 0x8100
 - tag 2 bytes of TCI (Tag Control Information): priority (3 bits), VLAN Id (12 bits) (VID 0x001 often reserved for management)
 - max length = 1522 bytes

Tagged VLANs

Summary

- Original Ethernet is a shared medium: one collision domain per LAN
- Bridges are connectionless intermediate systems that interconnect LANs
- Using bridging, we can have several collision domains per LAN
- Ethernet switches use bridging
- State of the art
 - switched 100 Mb/s Ethernet to the host
 - 1 Gb Ethernet between switches
- Wireless LANs become increasingly popular
 WiFi, Bluetooth

32