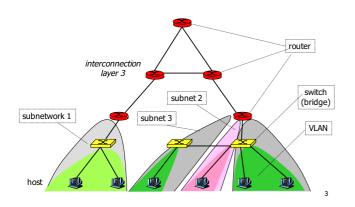


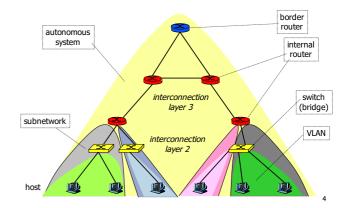
Advanced Computer Networks

<u>Interconnection Layer 2:</u> <u>bridges and VLANs</u>

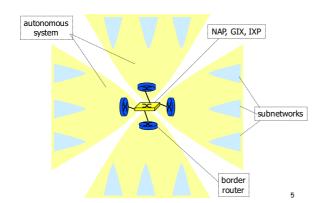
Prof. Andrzej Duda duda@imag.fr


http://duda.imag.fr

Contents


- Transparent bridges
- Spanning Tree Protocol (STP)
- Rapid Spanning Tree Protocol (RSTP)
- VLANs

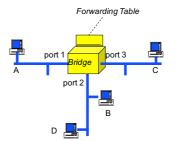
2


Interconnection structure

Autonomous systems

Internet

Interconnection of AS


- Border routers
 - interconnect AS
- NAP or GIX, or IXP
 - exchange of traffic peering
- Route construction
 - based on the path through a series of AS
 - based on administrative policies
 - routing tables: aggregation of entries
 - works if no loops and at least one route routing protocols (EGP - External Routing Protocols)

Transparent Bridging (TB)

- Bridges are intermediate systems that forward MAC frames to destinations based on MAC addresses
- Interconnect systems beyond one LAN segment, keeping main characteristics of LAN
 - without additional addresses
 - · MAC addresses used to identify end systems
- End systems ignore that there are transparent bridges
 - bridge is transparent
 - MAC frames not changed by bridges
 - frames not sent to bridge, but rather: bridge is promiscuous
 - · listens to all frames and retransmits if needed

Transparent Bridging (TB)

- Administrator creates the forwarding table
- TB operation
 - · connectionless forwarding, unstructured addresses

Forwarding Table

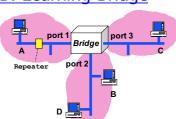
Dest Port

MAC Nb

addr

A 1

B 2

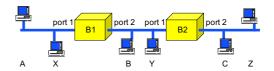

C 3

D 2

7

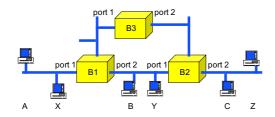
11

LB: Learning Bridge



- Bridge builds forwarding table by reading all traffic
 - bridges are plug and play: no address configuration (no IP address needed)
 - table built by **learning** from SA field in MAC frame
 - a table entry has limited life (MaxLife, 5 minutes)
- Flooding if destination address unknown or group address

Several Learning Bridges


- Can the learning bridge be extended to a network of bridges?
- How does B2 see the network?

10

Loops

- What happens when A sends a frame to B?
 - assume empty forwarding table

Loop-Free topology

- Learning bridge works well on Loop-Free topology only
 - Bidirectional graph: node = bridge, edge = connection through LAN
 - Loop free bidirectional graph = bidirectional tree
 examples: line, star
 - On a tree, there is only one path from A to B
 - Proposition: If bridge topology is loop-free, then there exists only one path from any end system to any bridge
 - Loop-free topology is required and sufficient for

Spanning Tree Bridges

- Based on learning bridge:
 - table driven forwarding, flooding if unknown DA or multicast, learning
- Forces topology to a tree
 - Spanning Tree algorithm run by all bridges
 - Some ports blocked to prevent loops
 - ports that are allowed to forward frames (in either way) are said to be "in the forwarding state" or called "forwarding ports"
- Interconnection of bridges
 - several parallel paths for reliability
 - Spanning Tree algorithm chooses one path at a given instant

Forwarding Method

1

TB Spanning Tree Specification

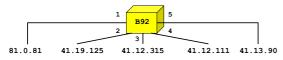
Set of bridges with

- bridge Id and prio
- bridge ports on LANsLAN costs
- TB Spanning Tree

One bridge selected as root

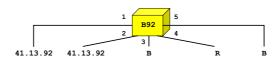
13

15

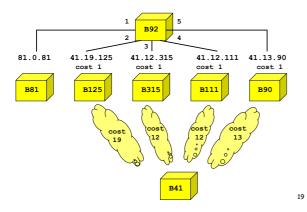

17

- one root portdesignated ports(other ports are blocked)
- Bridges viewed as a bidirectional graph (nodes = bridges)
- Selection of the root bridge
 - lowest priority with lowest identifier
- Spanning Tree = shortest path tree from root to all bridges
 - edge costs set by management, high cost = less traffic
 - based on distributed Bellman-Ford (distance vector)
 - cost_to_root = best_announced_cost + local_cost

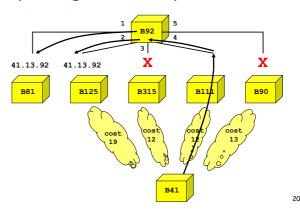
Spanning Tree Specification


- Root port on one bridge = port towards root, shortest path
 - in case of equal costs, lowest id chosen
- Designated bridge
 - one per LAN
 - it has the shortest path to root via root port
- Designated ports
 - all ports for which the bridge is designated
 - connect LANs to the spanning tree
- Ports other than root or designated are blocked
- Configuration messages
 - rootId.cost_to_root.senderId.port (41.13.92.3)
 - simplified: rootId.cost_to_root.senderId

Spanning Tree example


- Best root: 41
- Best cost: 12 + 1 = 13, on port 3 or 4 (cost=1)
- Root port: 4, because 111<315
- New message: 41.13.92
- Ports 1 and 2 are designated: 41.13.92 is better than 81.0.81 and 41.19.125
- Port 3 and 5 are blocked: 41.13.92 is not better than 41.12.315 nor 41.13.90

Spanning Tree example



- Message 41.13.92 sent periodically on ports 1 and 2
- Ports 1, 2, 4 participate in forwarding (they are in the Spanning Tree)

Spanning Tree example

Spanning Tree example

STP - Spanning Tree protocol

- IEEE 802.1D
- Distributed in all bridges
- Bridges exchange messages with neighbours in order to both
 - elect a root
 - determine shortest path tree to root
 - root port = port towards root on shortest path tree
 - designated ports = connect LANs to the spanning tree
 - designated bridge = one per LAN, has shortest path to root via root port

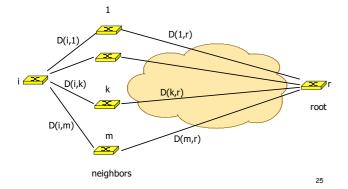
STP (IEEE 802.1d)

- Each bridge has a Bridge Identifier number, based on MAC address + configurable offset
- Bridge with smallest Bridge Identifier is the "root"
- Each link has a cost

Link Bit Rate	Cost
4 Mb/s	250
10 Mb/s	100
16 Mb/s	62
45 Mb/s	39
100 Mb/s	19
155 Mb/s	14
622 Mb/s	6
1 Gb/s	4
10 Gb/s	2

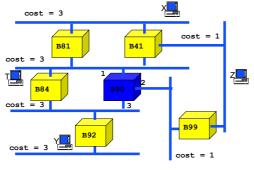
21

23

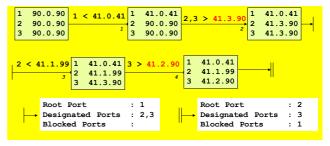

Bridge PDUs

- Control method uses control frames called Bridge PDUs (BPDUs)
 - 802.3 encapsulation, LLC frame with SAP = x42
 - MAC DA = all bridges (multicast) 01 80 C2 00 00 00
- BPDUs are not forwarded by bridges
 - unlike all other frames BPDUs are sent by one bridge to all bridges on the same LAN segment
 - reminder: a data frame is never sent to bridge by end system
- Configuration BPDU contains
 - root Id
 - cost to root (from sender of config BPDU)
 - id of sender
 - port number (omitted in the examples)

Initialization of Spanning Tree

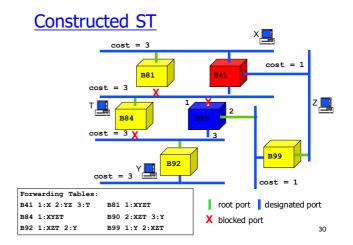

- Bridge initially assumes self as a root
- Bridge computes own new config BPDU based on received information
 - determine best root so far
 - distance to root with Bellman-Ford distance D from me to root = min [D(me, neighbor) + D(neighbor, root)]
- On every port, Bridge transmits config BPDU until it receives a better config BPDU on that port
 - better = closer to root (lower cost or lower Id)
- On every port, bridge maintains copy of best config BPDU sent or received

Bellman-Ford algorithm


Basic ST Procedure

Complex example

Initialization of Spanning Tree

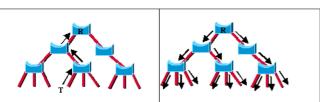

 Bridge B90 prepares config BPDU 90.0.90 and sends on all ports; B90 configuration tables:

message received on port 1: 1 < 41.0.41 message format: rootId.cost_to_root.senderId

Comments

- When receiving a message we compare the cost (with the local cost included), but we store the message received (without the cost)
- On receiving 41.0.41 on port 1:
 - 41.3.41 < 90.0.90? yes -> 1 becomes root
 - new config msg = 41.3.90
 41.3.90 < 90.0.90? yes -> 2 becomes designated
 41.3.90 < 90.0.90? yes -> 3 becomes designated
- On receiving 41.1.99 on port 2:
 - 41.2.99 < 41.3.41? yes -> 2 becomes root
 - new config msg = 41.2.90
 41.2.90 < 41.3.90? yes -> 3 becomes designated
 41.2.90 < 41.0.41? no -> 1 becomes blocked

STP Topology Management


- Topology change can be
 - local a configuration msg changes the state of a port (one port changes into the Forwarding or Blocking state)
 - global topology update mechanism via root
- Detection
 - configuration message is too old (the path to the root is no longer available)
 - receive a new better configuration
- When topology change detected
 - inform root
 - · restart spanning tree computation
 - force bridges to use a shorter timeout interval (purge the forwarding table)

Topology change

- When one bridge detects a topology change
 - bridge sends topology update BPDU towards root and enters Listening state (upstream bridges repeat BPDU up to root)
 - root forwards new config BPDU with "topology change flag" set during ForwardDelay (15 s) + MaxAge (20 s)
 - causes all bridges to use the short timeout value for the forwarding table (see later)
 - until BDPU from root received with "topology change" flag cleared

31

Example

New link added to bridge Topology update sent to root Topology update sent by root on ST for

MaxAge + ForwardDelay

All bridges recompute ST + set forwarding tables in learning state

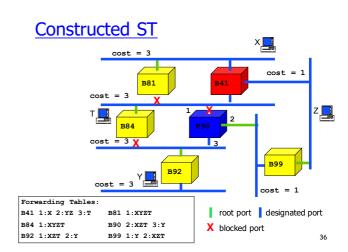
Source: CISCO RSTP White Paper

33

Configuration monitoring

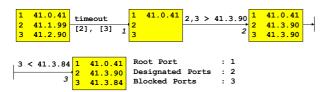
- root sends a configuration message every HelloTime (2 s)
- message received with Age, retransmitted with Age += 1
- if Age = MaxAge (20 s), delete the stored configuration and restarts basic ST procedure

```
Root sends config BPDUs every HelloTime;


Bridge B receives config BPDU on root port i ->
Reset timer Age on stored_config[i]
for all designated ports j
B sends own config BPDU
B resets timer Age on stored_config[j]

Bridge B timeouts (MaxAge) stored_config[j]->
delete stored_config[j];
B performs basic ST procedure;
```

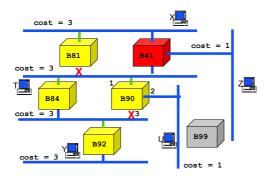
. .


Timers

- · Timers used in topology management
 - HelloTime (2 s): time interval between Config BPDUs sent by the Root Bridge.
 - ForwardDelay (15 s): time interval that a bridge port spends in both the Listening and Learning states
 - MaxAge (20 s): time interval that a bridge stores a BPDU before discarding it
 - recommended values for a spanning tree of diameter 7
- Time to update
 - detect and rebuild: 35 s = 20 s + 15 s
- Time to change from blocking to forwarding state
 - detect, rebuild, and learn addresses: 50 s = 20 s + 15 s + 15 s

Example

B99 powered off; stored config at B90:



Spanning Tree after failure?

Comments

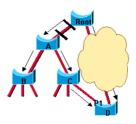
- After timeout:
 - 41.3.41 is the best configuration -> 1 becomes
 - new config msg = 41.3.90
 - 2 and 3 becomes designated
- On receiving 41.3.84 on port 3:
- 41.6.84 < 41.3.41? no -> 1 stays root
 - new config msg = 41.3.90 2 stays designated 41.3.90 < 41.3.84? no -> 3 becomes blocked

ST after failure

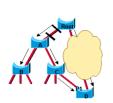
41

Synchronization with Forwarding

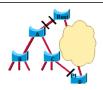
- Topology changes cause loops or loss of connectivity
 - during reconfiguration, topology is not yet (in general) loop free
 - even transient loops should be avoided
- Solution: Forwarding state is not immediately operational
 - pre-forwarding states:
 - Listening (accept config msgs, no forwarding): wait for stabilization of ST (ForwardDelay, $15 \, \mathrm{sec}$)
 - Learning (learn MAC addresses, no forwarding): wait for addresses to be learnt (ForwardDelay, 15 sec)


Actions		
Forward	ST	Learn
		х
		x
	х	x
x	х	х
	Forward	Forward ST

Forwarding Table entry timers


- MaxLife = duration of an entry in the forwarding table
- Two timer values are used
 - long timer (5mn): normal case
 - short timer = ForwardDelay (15 s): after spanning tree
- Timer switching mechanism
 - Bridge B detects change in ST -> MaxLife = ForwardDelay

Example


Bridge A newly connected to root. What happens?

Source: CISCO RSTP White Paper

- 1. A and root run ST procedure on new
- ports.
 2. This triggers new BPDUs sent to B
- 3. D computes port p1 as new root

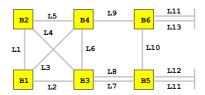
- 1. p1 at D is set to listening state for 15 s
- 2. p1 at D is set to learning state for 15 s

topology change is fast (in this case), but forwarding is not enabled immediately

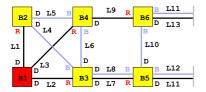
RSTP - Rapid ST protocol

- IEEE 802.1W
- Evolution of STP
- Goal: fast reconfiguration
- Improvement of handling topology changes and synchronization with packet forwarding
 - avoids use of timers as much as possible
- Main improvements are
 - fast reconfiguration: use of alternate paths to root or backup path to a LAN
 - fast transition to forwarding state with negotiation protocol instead of relying on timers
 - fast flushing of forwarding tables after topology changes

Port Roles in RSTP

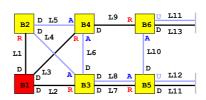

- A port role is one of: root, designated, alternate, backup,
- root port = port towards root (same as STP)
- **designated** port = connects LAN to the spanning tree (same as STP)
- Port that is not root nor designated
 - is alternate: connects the bridge to root after topology update (alternate path to root)

45

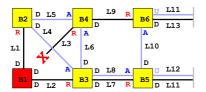

47

- is backup: connects LAN to the spanning tree after topology update (alternate path to root for the LAN)
- is **blocked**: not in the spanning tree

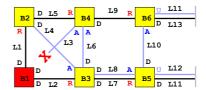
Another example of STP



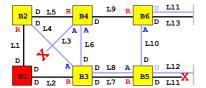
Constructed ST


- R root ports, D designated ports, B blocked ports

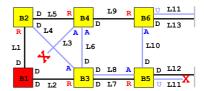
ST constructed by RSTP


- R root ports, D designated ports, B blocked ports
- A alternative ports, U backup ports

L3 fails


- B1 root
- R root ports, D designated ports, B blocked ports
- A alternative ports, U backup ports

L3 fails


- On B4
 - port on L3 becomes A and state Discarding
 - port on L5 becomes R and state Forwarding

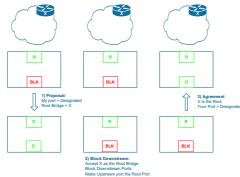
L11 fails

- B1 root
- R root ports, D designated ports, B blocked ports
- A alternative ports, U backup ports

L11 fails

On B5

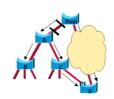
51

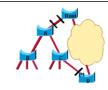

53

- port on L11 becomes U and state Discarding
- port on L12 becomes D and state Forwarding

RSTP - Rapid ST protocol

- If topology change
 - same reconstruction protocol as STP
 - topology change notification flooded accross ST
- Rapid recovery
 - Proposal/Agreement sequence between bridges that change state of a port: immediate transition to Forwarding state
 - link failure detection by MAC layer
 - change R to A and D to U (order of 10 ms)
 - but similar delay to STP, if topology update

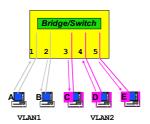

RSTP - Rapid ST protocol


mane opportunit por tire root of

RSTP - Rapid ST protocol

- Better root information received:
 - block all designated ports
 - send Proposal BPDU on all potential designated ports
- Downstream bridges:
 - compare Proposal with the current root information
 - if Proposal is better
 - elect root port
 - block all downstream ports
 - send Agreement BPDU upstream
 - send Proposal BPDU on all potential designated ports
 - - bridge that rejects Proposal it has better root information
 - · blocks the port on which it received Proposal
 - end of sync

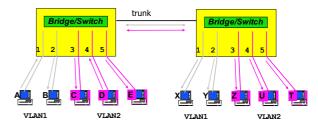
- 1. A and root run ST procedure on new
- ports.
 2. This triggers new BPDUs sent to B
- 3. D computes port p1 as new root



- p1 at D is set to listening state for 15 s
- p1 at D is set to learning state for 15 s

topology change is fast (in this case), but forwarding is not enabled immediately

VLAN - Virtual LAN


- Keep the advantages of Layer 2 interconnection
 - auto-configuration (addresses, topology Spanning Tree)
 - performance of switching
- Enhance with functionalities of Layer 3
 - extensibility
 - spanning large distances
 - traffic filtering
- Limit broadcast domains
- Security
 - separate subnetworks

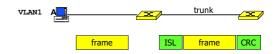
55

Virtual LANs

- No traffic between different VLANs
- VLANs build on bridges or switches

VLANs

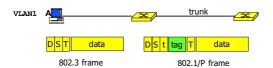
- How to define which port belongs to a VLAN?
 - per port
 - · simple, secure, not flexible for moving hosts (one host per port)
 - per MAC address
 - several hosts per port, flexible for moving hosts, not secure, difficult to manage, problems with protocols Layer 3 (should be coupled with dynamic address negotiation - DHCP)
 - per Layer 3 protocol
 - allows to limit frame broadcast (VLAN1: IP, VLAN2: IPX)
 - per Layer 3 address
 - · one VLAN per IP subnetwork
 - · flexible for moving hosts
 - · less efficient (requires inspecting packets)
 - per IP Multicast group
 - hosts that join an IP multicast group can be seen as members of the same virtual LAN


VLANs

- How to extend VLAN to several bridges/switches?
 - needs frame identification tagging
- Frame tagging
 - explicit tagging
 - add VLAN identifier to MAC frames
 - implicit tagging
 - VLAN Id deduced from port number, MAC address, layer 3 protocol, layer 3 address, IP Multicast group
 - implicit tagging makes use of filtering database
 - mapping between VLAN Id and the appropriate field (e.g. layer 3 address)

Frame tagging

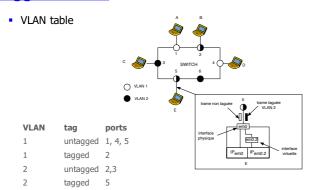
- VLAN identifier in frames
 - usually done by the first switch/bridge
- Standards
 - CISCO: ISL (Inter-Switch Link)
 - IEEE 802.1Q/802.1P


ISL (Inter-Switch Link)

- CISCO: ISL (Inter-Switch Link)
 - proprietary solution: encapsulates a frame in an ISL frame (26 bytes header, 4 bytes CRC)
 - incompatible with other vendors increased maximal length of 802.3 frame

61

802.1Q

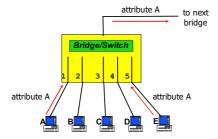

- Frame encapsulation
 - extension for assigning frame priority and VLAN tag
 - t 2 bytes of TPI (Tag Protocol Identifier): 0x8100
 - tag 2 bytes of TCI (Tag Control Information): priority (3 bits), VLAN Id (12 bits) (VID 0x001 often reserved for management)
 - max length = 1522 bytes

802.10

- Bridge/switch keeps track of VLAN members based on dynamic filtering entries
 - Dynamic Registration: specify ports registered for a specific
 - added and deleted using GARP VLAN Registration Protocol (GVRP), GARP is the Generic Attribute Registration Protocol
 - Group Registration: indicate frames to a group MAC address
 - added and deleted using Group Multicast Registration Protocol (GMRP)
 - multicasts sent on a single VLAN without affecting other VLANs

3

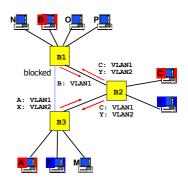
Tagged VLANs


GARP

Defines

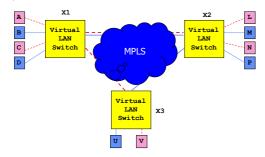
65

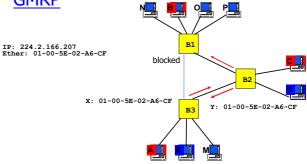
- method to declare attributes to other GARP participants
- frame type to use (GPDU)
- rules for registering/deleting attributes
- How does it work?
 - bridge wants to declare an attribute
 - send a declaration
 - other bridges propagate the declaration


GARP

- Attribute propagation
 - stored at bridge
 - multiple attributes are filtered out only one declaration is propagated
 - propagation follows the spanning tree of bridges

GARP


- Attributes on VLAN memebership are sent over the spanning tree
- Frames are forwarded according to this information


68

Remote VLANs - VPLS service

- Interconnect remote switches/bridges
- Uses ATM or other proprietary methods as a physical laver

GMRP

- Register to a group address it uses GARP
- Multicast frames are forwarded according to this information

70

Conclusion

- Ethernet switches/bridges dominate
- 1Gb/s switches for hosts, 10-40-100 Gb/s in the backbone
- Complex interconnection
 - · parallel paths may exist for reliability
 - SPT or RSTP guarantees loop-free interconnection
 - VLANs help to structure the interconnection
 - separate broadcast domains
- limited scalabilityProducts
 - Switch/Router integrated ports: Layer 2 and Layer 3
 - administrator chooses the right level for each port