Advanced Computer
Networks

Congestion control in TCP

Prof. Andrzej Duda
duda@imag.fr

http://duda.imag. fr

eeeeeeee



Contents

= Principles

= TCP congestion control states
= Slow Start
= Congestion Avoidance
= Fast Recovery

= TCP friendly applications



TCP and Congestion Control

= TCP is used to avoid congestion in the Internet

= a TCP source adjusts its sending window to the congestion
state of the network

= this avoids congestion collapse and ensures some fairness

= TCP sources interpret losses as a negative feedback
= used to reduce the sending rate

= Window-based control

= UDP sources are a problem for the Internet

= use for long lived sessions (ex: RealAudio) is a threat:
congestion collapse

= UDP sources should imitate TCP : “TCP friendly”



Sending window

\ W bytes o/

RTT

= W - the number of hon ACKed bytes
= throughput = W/RTT (Little's formulae)

= If congestion
« RTT increases, automatic reduction of the source rate
= additional control: decrease W



Sending window

= Sending window - number of non ACKed bytes
= W = min (cwnd, OfferedWindow)
= cwnd
- congestion window - maintained by TCP source
= OfferedWindow

- announced by destination in TCP header
- flow control
- reflects free buffer space
= Same mechanism used for flow control and for
congestion control



Self-clocking or ACK Clock

Sender Receiver

—

= Self-clocking systems tend to be very stable under a wide
range of bandwidths and delays.

= The principal issue with self-clocking systems is getting
them started.




Congestion control states

= TCP connection may be in three states with respect
to congestion

- Slow Start (Démarrage Lent) after loss detected by
retransmission timer

- Fast Recovery (Récupération Rapide) after loss detected
by Fast Retransmit (three duplicated ACKSs)

- Congestion Avoidance (Evitement de Congestion)
otherwise
= Terminology

« ssthresh — target window, same as ssthresh

= flightSize - the amount of data that has been sent but not
yet acknowledged, roughly cwnd



Slow Start and Congestion
Avoidance

connection opening: ssthresh = 65535 B
cwnd = 1 seg

\ retransmission
timeout: Congestion
Slow Start < q
o _ Avoidance
- multiplicative
decrease for ssthresh
exponential - cwnd = 1 seg |Additive
increase for cwnd Increase for cwnd,
until cwnd = ssthresh ‘
cwnd = ssthresh
retransmission
timeout:
~ Multiplicative notes
. P this shows only 2 states out of 3
Decrease for ssthresh )
ssthresh = target window 8

- cwnd = 1 seg



Slow Start

/ * exponential increase for cwnd */

non dupl. ack received during slow start ->

cwnd = cwnd + MSS (in bytes)

if cwnd = ssthresh then transition to
congestion avoidance

= Window increases rapidly up to the value of ssthresh
Not so slow, rather exponential



Slow Start

cwnd—lseg 5678

VW

= purpose of this phase: avoid bursts of data at the
beggining or after a retransmission timeout

10



Increase/decrease

Multiplicative decrease
= ssthresh = 0.5 flightSize

= ssthresh = max (ssthresh, 2 MSS)
= cwnd = 1 MSS

Additive increase
= for each ACK

« cwnd = cwnd + MSSXMSS / cwnd

= cwnd = min (cwnd, max-size) (64KB)

= cwnd isin bytes, counting in segments, this means that

- we receive (cwnd/MSS) ACKs per RTT
- for each ACK: cwnd/MSS « 1/W

- for a full window: W — W + 1 MSS
11



4 S

cwnd Additive Increase

T
i

Wy

= during one round trip + interval between packets:
increase by 1 MSS (linear increase)

12



congestion avoidance — in red

flightSize = cwnd 13



Example

Bytes
4 ssthresh
60
1+ cwnd
30 +
0 |
0] 1 2

seconds

created from data from: IEEE Transactions on
Networking, Oct. 95, “TICP Vegas”, L. Brakmo
and L. Petersen 14



Example

Bytes
ssthresh A B C
4 .
60 F
:: cwnd
30 T
0 | | | | | | e
0 1 2 3 4 5 6 7 8 9

seconds

B slow C
congestion avoidance; Start congestion avoidance

g |
L » «

created from data from: IEEE Transactions on
Networking, Oct. 95, “TICP Vegas”, L. Brakmo
and L. Petersen 15




Slow Start and Congestion
Avoidance

B Sslow C

start
congestion avoidance ;congestion avoidance

v
A

created from data from: IEEE Transactions on
Networking, Oct. 95, “TICP Vegas”, L. Brakmo
and L. Petersen 16



Congestion Control States

connection opening:
ssthresh = 65535 B
cwnd = 1 seg l

cwnd > ssthresh: Congestion
Slow Start > q *
Avoidance
- exponential - Additive
increase . retr. timeout: Increase
fast fast

retransmit: retransmit

retr. timeout:

. Fast «
- Mul tlpllcatlve Recovery
Decrease for ssthresh B
- cwnd = 1 segqg - inflate
beyond
retr. timeout: ssthresh expected ack received:




Fast Retransmit

P1 P2 P3 P4 P5 P6 P3 P7

WL

Al A2 A2 A2 A2

= Fast Retransmit
retransmit timer can be large
optimize retransmissions similarly to Selective Retransmit

if sender receives 3 duplicated ACKs, retransmit
missing segment

18



Fast Recovery

Concept: cwnd

= After fast retransmit,
reduce cwnd by half, and
continue sending
segments at this reduced
level.

Problems:

=  Sender has too many
outstanding segments.

= How does sender transmit
packets on a dupACK?
Need to use a “trick” -
inflate cwnd.

A

.......................... (initial) ssthresh
fast-retransmit
\ ; fast-retransmit

o :
C : /
g 7| /
I . . . .‘
. new ACK :
[ . new ACK,~/
I Rd : 7
.I. ._' ’
/
/ !
/ I
’ /
., v ’ /.
e - —_——— e — ___ ........ I Time
| Slow Start | | Congestion Avoidance




Fast Recovery

Multiplicative decrease (Reno + NewReno)
= ssthresh = 0.5 flightSize (cwnd)

= ssthresh = max (ssthresh, 2 MSS)

Fast Recovery (Reno + NewReno)
cwnd = ssthresh + 3 MSS (inflate)

= cwnd = min (cwnd, 64K)
= retransmit the missing segment (n)

For each duplicated ACK (Reno + NewReno)
= cwnd = cwnd + MSS (keep inflating)
= cwnd = min (cwnd, 64K)

= keep sending segments in the current window

For partial ACK (NewReno)
= retransmit the first unACKed segment

= cwnd = cwnd - ACKed + MSS (deflate/inflate)

20



Fast Recovery Example

Bytes

ssthresh
4 . P
60 E
30 T
0 [ [ I I I I
B 0 1 2 3 4 5 6

seconds

A-B, E-F: fast recovery
C-D:

slow start

21



TCP Congestion Control

= TCP performs congestion control in end-systems
= Principle
= sender increases its sending window until loss occurs, then
decreases
= Target window
= additive increase (no loss)
= multiplicative decrease (loss)

multiplicative decrease

additive increase 10SS [

g s lossg
»

additive increase

3
g
.
.
*
3
.
.
‘e
.

.
.
3
3
3
g
.
s
. .

slow start

22



TCP Congestion Control

= 3 phases
- slow start
- starts with 1, exponential increase up to twnd

- congestion avoidance
- additive increase until loss or max window

- fast recovery
- fast retransmission of one segment

Slow start entered at setup or after retransmission
timeout

Fast recovery entered at fast retransmit
= Congestion avoidance entered when cwnd > ssthresh

23



Summary of TCP Behavior

TCP Response to 3 | Response to Partial ACK | Response to “full” ACK of
Variation dupACKs of Fast Retransmission Fast Retransmission
Do fast retransmit,
Tahoe ++cwnd ++cwnd
enter slow start
: Exit fast recovery, deflate Exit fast recovery, deflate
Do fast retransmit, , , , ,
Reno window, enter congestion window, enter congestion
enter fast recovery . :
avoidance avoidance
Do fast retransmit, | Fast retransmit and deflate | Exit modified fast recovery,
NewReno | enter modified fast window — remain in deflate window, enter

recovery

modified fast recovery

congestion avoidance




TCP Flavors

= TCP-Tahoe

» cwnd =1 on triple dupACK (Fast Retransmit ->
Slow Start)

= TCP-Reno
» cwnd =1 on timeout
» cwnd = cwnd/2 on triple dupACK (Fast Recovery)
» cwnd += 1 on dupACK (Fast Recovery)

= TC

P-newReno
'CP-Reno + improved fast recovery

= TC

P-SACK

ncorporates selective acknowledgements



Quick Review

= Slow-start: cwnd starts at 1MSS

= ACK of new data:
» cwnd — cwnd + 1 (units of cwnd)

= Switch to Congestion Avoidance when cwnd > ssthresh

= Congestion Avoidance: AIMD
« 3 dupACKs: cwnd — cwnd /2

= ACK of new data:
» cwnd — cwnd + MSS?/ cwnd (bytes)

» cwnd — cwnd + 1/cwnd (units of cwnd)

= Time-out:
= ssthresh —» cwnd/2 (AIMD)

= cwnd — 1MSS
= Do slow-start



Quick Review

Fast Recovery:
= If dupACKcount = 3

ssthresh = cwnd/2 (ssthresh just being used to store value)
cwnd = ssthresh + 3 MSS

= While in fast recovery
« cwnd = cwnd + 1 MSS for each additional duplicate ACK
= This allows source to send an additional packet...
- ...to compensate for the packet that arrived (generating dupACK)

= EXit fast recovery after receiving new ACK
» Set ewnd = ssthresh (which had been set to ewnd/2 after loss)



Event: ACK (new data)

= If in Slow Start
= cwnd += 1 (MSS)

= If in Fast Recovery
= cwnd = ssthresh

= Leave Fast Recovery

— Slow start phase

o Leaving Fast
Recovery

_/

= Else (in Congestion Avoidance)

« cwnd = cwnd + 1/cwnd

= Reset DupACKcount

"Congestion
— Avoidance” phase
(additive increase)




Event: dupACK

= dupACKcount ++

= If dupACKcount = 3 /* Fast Retransmit */
« ssthresh = cwnd/2

» cwnd = ssthresh + 3
- and retransmit packet!

= If dupACKcount > 3 /* Fast Recovery */
» cwnd = cwnd + 1 (MSS)



A Reno example

< \’___‘ACK

A N’ de séquence du 1°" octet du segment
L~ABCDEFGHIJK

Réception Emission !

ACKA
ACKA '
ACKA A ssthresh + 3 MSS
ACKA
ACKA |
w
g' ACKA J
@
" ACKD ssthresh
H é 8
ACKD o §
S
ACKD
Slow
D Start

TCP B TCPA,




Simulations

= Using ns-2 network simulator
= Simulated network

TCP traffic
........................... R
e 0

20 pkts 20 pkts

source
router destination




TCP Tahoe

70

60

50

40

30

20

10 |

T T I I I
Tahoe cwnd ——
J L
1 1 ! - | time (s)
10 20 30 40 50 60



TCP Reno

70

60

50

40

30

20

10 |

Renocwnd ——

|

I

time (s)



TCP New Reno

35

70

60

50

40

30

20

10 |

| l
New Reno cwnd

I

20

time (s)



TCP Loss - Throughput formulae

_LC
O=T

Va

= TCP connection with
« RTT T
= segment size L
= average packet loss ratio g
= constant C= 1.22

= Transmission time negligible compared to RTT,

losses are rare, time spent in Slow Start and Fast
Recovery negligible

36



Fairness of the TCP

= TCP differs from the pure AI-MD principle
- window based control, not rate based
= increase in rate is not strictly additive - window is increased by
1/W for each ACK
= Like with proportional fairness, the adaptation
algorithm gives less to sources using many resources
« not the number of links, but RTT

= TCP fairness: negative bias of long round trip times

37



Fairness of the TCP

destination
router S

10 Mb/s, 20 ms 1 Mb/s 10 ms

10 Mb/s, 60 ms 8 seg. 8 segq.

= Example network with two TCP sources

« link capacity, delay
= limited queues on the link (8 segments)

= NS simulation .



Throughput in time

1 ACK numbers

5

e

time

39



TCP Friendly Applications

= All TCP/IP applications that generate long lived flows
should mimics the behavior of a TCP source
= RTP/UDP flow sending video/audio data

= Adaptive algorithm
= application determines the sending rate
« feedback - amount of lost packets, loss ratio

= sending rate = rate of a TCP flow experiencing the same
loss ratio

40



Facts to remember

= TCP performs congestion control in end-systems

= sender increases its sending window until loss occurs, then
decreases

- additive increase (no loss)
- multiplicative decrease (loss)

= TCP states
= Slow start, congestion avoidance, fast recovery

= Negative bias towards long round trip times

= UDP applications should behave like TCP with the same
loss rate

41



