
1

Advanced Computer
Networks

Congestion control in TCP

http://duda.imag.fr

Prof. Andrzej Duda
duda@imag.fr

2

Contents
§ Principles
§ TCP congestion control states

§ Slow Start
§ Congestion Avoidance
§ Fast Recovery

§ TCP friendly applications

3

TCP and Congestion Control
§ TCP is used to avoid congestion in the Internet

§ a TCP source adjusts its sending window to the congestion
state of the network

§ this avoids congestion collapse and ensures some fairness
§ TCP sources interpret losses as a negative feedback

§ used to reduce the sending rate
§ Window-based control
§ UDP sources are a problem for the Internet

§ use for long lived sessions (ex: RealAudio) is a threat:
congestion collapse

§ UDP sources should imitate TCP : “TCP friendly”

4

W bytes

RTT

Sending window

§ W - the number of non ACKed bytes
§ throughput = W/RTT (Little's formulae)

§ If congestion
§ RTT increases, automatic reduction of the source rate
§ additional control: decrease W

5

Sending window

§ Sending window - number of non ACKed bytes
§ W = min (cwnd, OfferedWindow)
§ cwnd

§ congestion window - maintained by TCP source
§ OfferedWindow

§ announced by destination in TCP header
§ flow control
§ reflects free buffer space

§ Same mechanism used for flow control and for
congestion control

Self-clocking or ACK Clock

PrPb

Ar
Ab

ReceiverSender

As

§ Self-clocking systems tend to be very stable under a wide
range of bandwidths and delays.

§ The principal issue with self-clocking systems is getting
them started.

7

Congestion control states

§ TCP connection may be in three states with respect
to congestion
§ Slow Start (Démarrage Lent) after loss detected by

retransmission timer

§ Fast Recovery (Récupération Rapide) after loss detected
by Fast Retransmit (three duplicated ACKs)

§ Congestion Avoidance (Évitement de Congestion)
otherwise

§ Terminology
§ ssthresh – target window, same as ssthresh
§ flightSize - the amount of data that has been sent but not

yet acknowledged, roughly cwnd

8

Slow Start and Congestion
Avoidance

exponential
increase for cwnd
until cwnd = ssthresh

Slow Start

Additive
Increase for cwnd,

Congestion
Avoidance

cwnd = ssthresh

retransmission
timeout:

- multiplicative
decrease for ssthresh

- cwnd = 1 seg

retransmission
timeout:

- Multiplicative
Decrease for ssthresh
- cwnd = 1 seg

connection opening: ssthresh = 65535 B
cwnd = 1 seg

notes
this shows only 2 states out of 3
ssthresh = target window

9

Slow Start
/ * exponential increase for cwnd */

non dupl. ack received during slow start ->
cwnd = cwnd + MSS (in bytes)

if cwnd = ssthresh then transition to
congestion avoidance

§ Window increases rapidly up to the value of ssthresh
Not so slow, rather exponential

10

Slow Start

§ purpose of this phase: avoid bursts of data at the
beggining or after a retransmission timeout

32 5cwnd = 1 seg 4 6 7 8

11

Increase/decrease
§ Multiplicative decrease

§ ssthresh = 0.5 flightSize
§ ssthresh = max (ssthresh, 2 MSS)
§ cwnd = 1 MSS

§ Additive increase
§ for each ACK

§ cwnd = cwnd + MSS�MSS / cwnd
§ cwnd = min (cwnd, max-size) (64KB)

§ cwnd is in bytes, counting in segments, this means that
§ we receive (cwnd/MSS) ACKs per RTT
§ for each ACK: cwnd/MSS ← 1/W
§ for a full window: W ← W + 1 MSS

12

cwnd Additive Increase

§ during one round trip + interval between packets:
increase by 1 MSS (linear increase)

=
4 seg

54 6

13

Example

time

cwnd

Loss, e.g. timeout

slow start – in bleu

congestion avoidance – in red

(initial) ssthresh

flightSize = cwnd

14

Example

created from data from: IEEE Transactions on
Networking, Oct. 95, “TCP Vegas”, L. Brakmo
and L. Petersen

ssthresh

cwnd

A B C

0 1 2 3 4 5 6 7 8 9

60

30

0

Bytes

seconds

15

Example

created from data from: IEEE Transactions on
Networking, Oct. 95, “TCP Vegas”, L. Brakmo
and L. Petersen

0 1 2 3 4 5 6 7 8 9

60

30

0

Bytes

seconds

ssthresh

cwnd

congestion avoidance
slow
start congestion avoidance

A B C

B C

0 1 2 3 4 5 6 7 8 9

60

30

0

Bytes

seconds

16

Slow Start and Congestion
Avoidance

created from data from: IEEE Transactions on
Networking, Oct. 95, “TCP Vegas”, L. Brakmo
and L. Petersen

0 1 2 3 4 5 6 7 8 9

60

30

0

Bytes

seconds

congestion avoidance

slow
start

congestion avoidance

B C

17

Congestion Control States

Slow Start

- exponential
increase

Congestion
Avoidance

- Additive
Increase

Fast
Recovery

- inflate
beyond

ssthresh

retr. timeout:

cwnd ≥ ssthresh:

retr. timeout:

retr. timeout: expected ack received:

fast
retransmit:

fast
retransmit:

- Multiplicative
Decrease for ssthresh
- cwnd = 1 seg

connection opening:
ssthresh = 65535 B

cwnd = 1 seg

18

X

P1 P2 P3 P4 P5 P6 P3 P7

A1 A2 A2 A2 A2 A?

Fast Retransmit

§ Fast Retransmit
§ retransmit timer can be large
§ optimize retransmissions similarly to Selective Retransmit
§ if sender receives 3 duplicated ACKs, retransmit

missing segment

Fast Recovery

cwnd

Slow Start Congestion Avoidance
Time

�inflating� cwnd with dupACKs

�deflating� cwnd with a new ACK

(initial) ssthresh

new ACK

fast-retransmit
fast-retransmit

new ACK

timeout

Concept:
§ After fast retransmit,

reduce cwnd by half, and
continue sending
segments at this reduced
level.

Problems:
§ Sender has too many

outstanding segments.
§ How does sender transmit

packets on a dupACK?
Need to use a �trick� -
inflate cwnd.

20

Fast Recovery
§ Multiplicative decrease (Reno + NewReno)

§ ssthresh = 0.5 flightSize (cwnd)
§ ssthresh = max (ssthresh, 2 MSS)

§ Fast Recovery (Reno + NewReno)
§ cwnd = ssthresh + 3 MSS (inflate)
§ cwnd = min (cwnd, 64K)
§ retransmit the missing segment (n)

§ For each duplicated ACK (Reno + NewReno)
§ cwnd = cwnd + MSS (keep inflating)
§ cwnd = min (cwnd, 64K)
§ keep sending segments in the current window

§ For partial ACK (NewReno)
§ retransmit the first unACKed segment
§ cwnd = cwnd – ACKed + MSS (deflate/inflate)

21

Fast Recovery Example
ssthresh

cwnd

0 1 2 3 4 5 6

60

30

0

Bytes

seconds

twnd

cwnd

0 1 2 3 4 5 6

60

30

0

Bytes

seconds

E

F

A B C D E F

A-B, E-F: fast recovery
C-D: slow start

22

TCP Congestion Control
§ TCP performs congestion control in end-systems
§ Principle

§ sender increases its sending window until loss occurs, then
decreases

§ Target window
§ additive increase (no loss)
§ multiplicative decrease (loss)

additive increase
additive increase

multiplicative decrease

slow start

loss

loss

23

TCP Congestion Control
§ 3 phases

§ slow start
§ starts with 1, exponential increase up to twnd

§ congestion avoidance
§ additive increase until loss or max window

§ fast recovery
§ fast retransmission of one segment

§ Slow start entered at setup or after retransmission
timeout

§ Fast recovery entered at fast retransmit
§ Congestion avoidance entered when cwnd ≥ ssthresh

Summary of TCP Behavior

TCP
Variation

Response to 3
dupACKs

Response to Partial ACK
of Fast Retransmission

Response to �full�ACK of
Fast Retransmission

Tahoe
Do fast retransmit,

enter slow start
++cwnd ++cwnd

Reno
Do fast retransmit,
enter fast recovery

Exit fast recovery, deflate
window, enter congestion

avoidance

Exit fast recovery, deflate
window, enter congestion

avoidance

NewReno
Do fast retransmit,
enter modified fast

recovery

Fast retransmit and deflate
window – remain in

modified fast recovery

Exit modified fast recovery,
deflate window, enter
congestion avoidance

TCP Flavors
§ TCP-Tahoe

§ cwnd =1 on triple dupACK (Fast Retransmit ->
Slow Start)

§ TCP-Reno
§ cwnd =1 on timeout
§ cwnd = cwnd/2 on triple dupACK (Fast Recovery)
§ cwnd += 1 on dupACK (Fast Recovery)

§ TCP-newReno
§ TCP-Reno + improved fast recovery

§ TCP-SACK
§ incorporates selective acknowledgements

Quick Review
§ Slow-start: cwnd starts at 1MSS

§ ACK of new data:
§ cwnd → cwnd + 1 (units of cwnd)

§ Switch to Congestion Avoidance when cwnd ≥ ssthresh

§ Congestion Avoidance: AIMD
§ 3 dupACKs: cwnd → cwnd /2

§ ACK of new data:
§ cwnd → cwnd + MSS2/ cwnd (bytes)

§ cwnd → cwnd + 1/cwnd (units of cwnd)

§ Time-out:
§ ssthresh → cwnd/2 (AIMD)

§ cwnd → 1MSS
§ Do slow-start 26

Quick Review
Fast Recovery:
§ If dupACKcount = 3

§ ssthresh = cwnd/2 (ssthresh just being used to store value)
§ cwnd = ssthresh + 3 MSS

§ While in fast recovery
§ cwnd = cwnd + 1 MSS for each additional duplicate ACK
§ This allows source to send an additional packet…
§ …to compensate for the packet that arrived (generating dupACK)

§ Exit fast recovery after receiving new ACK
§ set cwnd = ssthresh (which had been set to cwnd/2 after loss)

Event: ACK (new data)
§ If in Slow Start

§ cwnd += 1 (MSS)

§ If in Fast Recovery
§ cwnd = ssthresh
§ Leave Fast Recovery

§ Else (in Congestion Avoidance)
§ cwnd = cwnd + 1/cwnd

§ Reset DupACKcount

Slow start phase

“Congestion
Avoidance” phase
(additive increase)

Leaving Fast
Recovery

Event: dupACK

§ dupACKcount ++

§ If dupACKcount = 3 /* Fast Retransmit */
§ ssthresh = cwnd/2
§ cwnd = ssthresh + 3
§ and retransmit packet!

§ If dupACKcount > 3 /* Fast Recovery */
§ cwnd = cwnd + 1 (MSS)

A Reno example
ACK
A

Z

6
x
ACK A

A
to
H

A
I J

3
x
ACK D

D

TCP ATCP B

Co
ng

es
tio

n
av

oi
da

nc
e

Slow
Start

§ Using ns-2 network simulator
§ Simulated network

Simulations

source
router destination

155 Mbps
1 ms

80 kbps
5.1 ms

20 pkts 20 pkts

TCP traffic

32

TCP Tahoe

time (s)

34

TCP Reno

time (s)

35

TCP New Reno

time (s)

36

TCP Loss - Throughput formulae

§ TCP connection with
§ RTT T
§ segment size L
§ average packet loss ratio q
§ constant C = 1.22

§ Transmission time negligible compared to RTT,
losses are rare, time spent in Slow Start and Fast
Recovery negligible

q
C

T
L=θ

37

Fairness of the TCP

§ TCP differs from the pure AI-MD principle
§ window based control, not rate based
§ increase in rate is not strictly additive - window is increased by

1/W for each ACK

§ Like with proportional fairness, the adaptation
algorithm gives less to sources using many resources
§ not the number of links, but RTT

§ TCP fairness: negative bias of long round trip times

38

Fairness of the TCP

§ Example network with two TCP sources
§ link capacity, delay
§ limited queues on the link (8 segments)

§ NS simulation

router destination
10 Mb/s, 20 ms 1 Mb/s 10 ms

10 Mb/s, 60 ms 8 seg. 8 seg.

S1

S2

39

Throughput in time

time

ACK numbers S1

S2

40

TCP Friendly Applications
§ All TCP/IP applications that generate long lived flows

should mimics the behavior of a TCP source
§ RTP/UDP flow sending video/audio data

§ Adaptive algorithm
§ application determines the sending rate
§ feedback - amount of lost packets, loss ratio
§ sending rate = rate of a TCP flow experiencing the same

loss ratio

41

Facts to remember
§ TCP performs congestion control in end-systems

§ sender increases its sending window until loss occurs, then
decreases

§ additive increase (no loss)
§ multiplicative decrease (loss)

§ TCP states
§ slow start, congestion avoidance, fast recovery

§ Negative bias towards long round trip times
§ UDP applications should behave like TCP with the same

loss rate

