

Advanced Computer Networks

Internal routing - distance vector protocols

Prof. Andrzej Duda duda@imag.fr

http://duda.imag.fr

Contents

- Principles of internal routing
 - construct Routing Tables
- Distance vector (Bellman-Ford)
 - principles
 - case of link failures
 - count to infinity
 - split horizon
- RIP
- RIP v2
- IGRP

Interconnection structure

Routing algorithms

- Problem
 - find the **best** route to a destination
- What does it mean the best?
 - metric to measure how a route is good
 - hops
 - delay (inverse of link capacity)
 - performance measures:
 - link load, instantaneous delay
 - cost
- Graph optimization Shortest Path
 - graph nodes are routers, graph edges are physical links
 - link cost: delay, \$ cost, or congestion level
 - find the **shortest** path in a graph

Routing algorithms

- Problem
 - find the **best** route to a destination
- What does it mean the best?
 - metric to measure how a route is good
 - hops
 - delay (inverse of link capacity)
 - performance measures:
 - link load, instantaneous delay
 - cost
- Graph optimization Shortest Path
 - graph nodes are routers, graph edges are physical links
 - link cost: delay, \$ cost, or congestion level
 - find the **shortest** path in a graph

Main algorithms

- Distance Vector (Bellman-Ford)
 - routers only know their local state
 - link metric and neighbor estimates
 - internal routing protocols (RIP, IGRP)
- Link State
 - knowledge of the global state
 - metrics of all links
 - global optimization (Shortest Path First Dijkstra)
 - internal routing protocols (OSPF)
- Path Vector
 - similar to DV announce prefixes
 - path: sequence of AS with attributes
 - coarse-grain optimization and policy routing
 - external routing protocols (BGP)

Metrics

- Static do not depend on the network state
 - number of hops
 - static delay (inverse of capacity)
 - cost
- Dynamic depend on the network state
 - link load
 - current delay

Flooding

- Simple and robust routing
 - no need for routing tables
 - each packet duplicated on each outgoing link
 - packet duplication
 - duplicated packets destroyed at destination
 - robust tolerates link or router failures
 - optimal in some sense
 - the first packet has found the shortest path to the destination
 - cannot be compared to the shortest path calculated by Link
 State no packet duplication
- Problem
 - increased load due to packet duplication
- Used in OSPF to distribute link state information and in ad hoc routing protocols (AODV, OLSR)

Distance vector

- Dynamic routing based on distributed estimation of the distance to the destination
 - uses the distributed algorithm by Bellman-Ford (dynamic programming)
 - each router receives aggregated information from its neighbors
 - estimates the local cost to its neighbors
 - computes the best routes
 - no global network states
- Distance
 - number of hops
 - delay

Bellman-Ford algorithm

- Bellman-Ford algorithm
 - node i knows cost c(i,k) to its immediate neighbours $(+\infty)$ for most values of k
 - distance D(i,n) is given by: $D(i,n) = \min_k (c(i,k) + D(k,n))$
 - in the worst case, convergence after *N*-1 iterations
- Distributed Bellman-Ford algorithm
 - initially: D(i,n) = 0 if *i* directly connected to *n* and $D(i,n) = + \infty$ otherwise
 - node i receives from neighbour k latest values of D(k,n) for all n (distance vector)
 - node *i* computes the best estimates

$$D(i,n) = \min_{k} (c(i,k) + D(k,n))$$

Bellman-Ford algorithm

Example of Bellman-Ford

	А	I	Н	K
Α	0	24	20	21
В	12	36	31	28
G	18	31	6	31
Н	17	20	0	19
I	21	0	14	22
J	9	11	7	10
K	24	22	22	0
J:	8	10	12	6

Table of J
8 A
20 A
18 H
12 H
10 I
0 6 K

computation of G : 18+8=26, 31+10=41, 6+12=18, 6+31=37 \rightarrow choice of 18, H

Distance vector example

- Simple network
 - routers connected by links
 - destinations = subnetworks connected to routers
 - symmetric links
 - cost = number of hops

Initialization

Distance vector announcement

Distance vector announcement

Distance vector announcement

Final

C

E

16

16

2

1

A В dest link cost dest link cost local local 0 0 A В 11 11 1 В 1 13 1 D 12 2 11 C 14 E 2 11 E D 11 C A В 11 12 C 14 13 12 Α 15 12 В 16 15 E D D D E 15 E dest link cost dest link cost local 0 local D 0 E 13 14 2 1 A A 13 2 14 1 В В

16

15

D

C

dest link cost local 0 2 1

Link failure

Link failure

Final state after failure

A dest link cost local 0 A 13 3 \mathbf{B} 13 D C 13 2 13 E D

st link	cost
local	. 0
14	3
12	1
14	1
14	2
	local 14 12 14

B
12
13
14
15
C
D
E
E

В

dest	link	cost
D	local	0
A	13	1
В	16	2
С	16	2
E	16	1

dest	link	cost
E	local	0
A	16	2
В	14	1
D	16	1
С	15	1

 dest link cost

 C local 0

 A 15 3

 B 12 1

 D 15 2

 E 15 1

C

Equal link costs - link failures

A

D

des	t link	cost
A	local	0
В	13	3
D	13	1
С	13	3
E	13	2

13 D

В

dest	link	cost
В	local	0
A	14	3
С	12	1
E	14	1
D	14	2

B 12 14 C 15 E E

dest	link	cost
E	local	0
A	16	2
В	14	1
D	16	1
С	15	1

C

dest	link	cost
С	local	0
A	15	3
В	12	1
D	15	2
E	15	1

Counting to infinity

A

link	cost
local	0
13	3
13	1
13	3
13	2
	local 13 13

des	t link	cost
D	local	0
A	13	1
В	13	4
С	13	4
E	13	3

- Loop between A and D
- Exchange of routes, costs increase by 2 each cycle
- Convergence to a stable state
 - ∞ = large number
 - e.g. RIP: $\infty = 16$

Split horizon

- Minimize the effects of bouncing and counting to infinity
- Rule
 - if A routes packets to X via B, it does not announce this route to B

Example of split horizon

A

D

des	t link	cost
A	local	0
В	13	3
D	13	1
С	13	3
E	13	2

13 D

des	t link	cost
D	local	0
A	13	1
В	16	∞
С	16	∞
E	16	∞

В

link	cost
local	0
14	3
12	1
14	1
14	2
	local 14 12 14

B 12 C 15 E E

dest	link	cost
E	local	0
A	16	2
В	14	1
D	16	1
С	15	1

C

dest	link	cost
С	local	0
A	15	3
В	12	1
D	15	2
E	15	1

Split horizon

A

des	t link	cost
A	local	0
В	13	3
D	13	1
С	13	3
E	13	2

 Split horizon cuts the process of counting to infinity

dest	link	cost
D	local	0
A	13	1
В	16	∞
С	16	∞
E	16	∞

Split horizon

A

des	t link	cost
A	local	0
В	13	∞
D	13	1
С	13	∞
E	13	∞

 Split horizon cuts the process of counting to infinity

des	t link	cost
D	local	0
A	13	1
В	16	∞
С	16	∞
E	16	∞

Split horizon may fail

Split horizon may fail

Split horizon may fail

15

local

5

14

14

14

15

E

from B: dest link cost dest cost В В D

E

C

dest	link	cost
С	local	0
A	15	3
В	12	1
D	15	2
E	15	1

RIP v1

- Distance vector protocol
- Metric hops
- Network span limited to 15
 - $\infty = 16$
- Split horizon
- Destination network identified by IP address
 - no prefix/subnet information derived from address class
- Encapsulated as UDP packets, port 520
- Largely implemented (routed on Unix)
- Broadcast every 30 seconds or when update detected
- Route not announced during 3 minutes
 - cost becomes ∞

Message format

- May be repeated 25 times
- Command
 - REQUEST 1 (sent at boot to initialize)
 - RESPONSE 2 (broadcast each 30 sec)

Missing netmask

- A and E can forward to 10.0.0.0
- Packet to 10.2.0.1 can go through F or B
 - if sent to B, it goes through A and C
- If link C-D broken, no route to destination

RIP v2 (RFC 2453)

- Subnetworks
 - take into account CIDR prefixes and netmasks
- Authentication
- Multicast
 - 224.0.0.9 mapped to MAC 01-00-5E-00-09
 - on LAN only, no need for IGMP

Message format

31

command	version	unused
address family		route tag
IP address		
netmask		
next router		
metric		

- Command, version unchanged
- One address family authentication
- Next router
 - used at the border of different routing domains (e.g. RIP and OSPF)
- Route tag
 - for external routes (used by BGP)

Announcing netmasks

- E can forward to 10.2.0.0
- Packet to 10.2.0.1 can go through F

Routing domains

- Different routing domains
 - e.g. routers under different administrations that run different routing protocols (RIP, OSPF)
- If A wants to send a packet to F, it goes through D and E
- When announcing F, D adds E as next router

Simple authentication

command version unused

xFFFF authentication type = 2

password on 16 bytes

Configuration of gated (/etc/gated.conf)
 rip yes {
 interface all
 version 2 multicast
 authentication simple "qptszwmz"
 }

MD5 authentication

31 0 version unused command authentication type = 3 xFFFF key Id auth. length packet length increasing sequence no. zero zero route info x01 xFFFF seal

MD5 authentication

- Seal
 - MD5 digest on the message using a shared secret
 - sequence number avoids replay attacks

```
Configuration of gated (/etc/gated.conf)
    rip yes {
        interface all
        version 2 multicast
        authentication md5 "qptszwmz"
    }
```

IGRP (Interior Gateway Routing Protocol)

- Proprietary protocol by CISCO
- Metric that estimates the global delay
- Maintains several routes of similar cost
 - load sharing
- Takes into account netmasks
- No limit of 15
 - number of routers included in messages
- Broadcast every 90 sec

Metric example

Metric

- Trans = 1000000/Bandwidth (time to send 10 Kb)
- delay = (sum of Delay)/10
- $m = [K_1*Trans + (K_2*Trans)/(256-load) + K_3*delay]$
- default: K1=1, K2=0, K3=1, K4=0, K5=0
- if K5 \neq 0, m = m * [K₅/(Reliability + K₄)]
- Bandwidth in Kb/s, Delay in μ s
 - At Venus: Route for 172.17/16: Metric = 10000000/784 + (20000+1000)/10 = 14855
 - At Saturn: Route for 12./8: Metric = 10000000/224 + (20000 + 1000)/10 = 46742

Conclusion

- Main distance vector protocols
- Largely deployed (Unix BSD routed)
- Simplicity
- Slow convergence
- Not suited for large and complex networks
 - Link State protocols should be used instead