

Advanced Computer Networks

Congestion control

Prof. Andrzej Duda duda@imag.fr

http://duda.imag.fr

Contents

- Objectives of Congestion Control
	- effciency
	- § fairness
- Max-min fairness
- Proportional fairness
- Additive increase, multiplicative decrease
- Different forms of congestion control

Congestion control

- How to allocate network resources?
	- link capacity
	- buffers at routers or switches
- What to do when the traffic exceeds link capacity?
	- congestion control

Performance criteria

- **Efficiency**
	- best use of allocated resources
	- max throughput 100 % utilization
	- min delay 0 % utilization
- § Fairness (équité)
	- fair share to each user
	- § different definitions of fairness
		- § equal share
		- § max-min fairness
		- § proportional fairness

Congestion Control - example

- Sources send as much as possible
- **Allocation of throughput**
	- if the offered traffic exceeds the capacity of a link, all sources see their traffic reduced in proportion of their offered traffic
	- approximately true if FIFO in routers

Throughput allocation

- **Throughput** x_{κ} **: source s on link /**
- **Traffic** λ_{s} **: generated by source s**
- Our example: $x_{11} = 100$ $x_{22} = 1000$ $x_{31} = 110 \times 100/1100 = 10$ $x_{32} = 110\times1000/1100=100$ $x_{41} = 10$ $x_{52} = 10$ throughput $\vartheta = 20$ kb/s **•** Allocation $x_{11} = \min (\lambda_1, C_1)$ x_{22} = min (λ_2 , C₂) $x_{3i} = \min (x_{ii}, C_3 x_{ii}/(x_{11} + x_{22}))$ x_{41} = min (x_{31}, C_4) x_{52} = min (x_{32}, C_5) throughput $\mathcal{Y}= X_{41} + X_{52}$

Congestion Control - example

- S_1 sends 10 kb/s because it is competing with S_2 on link 3
- $S₂$ is limited on link 5 anyway

Congestion Control - exemple

- How to increase throughput?
	- if $S₂$ is aware of the global situation and if it would cooperate
	- S_2 reduces x_{22} to 10 kb/s, because anyway, it cannot send more then 10 kb/s on link 5
	- $x_{31} = 100$ kb/s and $x_{41} = 100$ kb/s without any penalty for S_2
	- throughput is now $\mathcal{O} = 110$ kb/s

Congestion Control - exemple

■ Optimal use of resources

Efficiency criterion

- In a packet network, sources should limit their sending rate by taking into consideration the state of the network. Ignoring this may put the network into congestion collapse
	- network resources are not used efficiently
	- **performance indices perceived by sources are not** satisfactory
- One objective of congestion control is to avoid such inefficiencies

Efficiency versus Fairness

- Parking lot scenario
	- \blacksquare link capacity: C
	- n_i sources, rate x_i , $i = 1, ..., I$
	- traffic on link $i : n_0 x_0 + n_i x_i$

Maximal throughput

- For given n_0 and x_0 , maximizing throughput requires that
	- $n_i X_i = C n_0 X_0$
- Total throughput, measured at the network output

$$
\frac{\partial}{\partial y} = n_0 x_0 + \sum n_i x_i = n_0 x_0 + \sum (C - n_0 x_0) =
$$

= $n_0 x_0 + I(C - n_0 x_0) = IC - (I - 1) n_0 x_0$

$$
\frac{\partial}{\partial C} = \frac{\partial}{\partial C} \int_{\text{max}}^{\text{max}} \frac{\partial}{\partial C} = \frac{I}{C} \int_{\text{max}}^{\text{max}} \frac{\partial}{\partial C} = 0
$$

Maximum throughput

- § Example
	- $I= 2$, $n_0 = n_1 = 1$, $n_2 = 9$
- The value of x_0 for maximum throughput?
	- $-1: C?$
	- $-2: 2C?$
	- $-3:0.1 C?$
	- § 4: None of the above?

Maximum throughput

- Find $x_0 x_1 x_2$ such that:
	- $x_0 + x_1 \le C \to x_0 + x_1 = C$
	- $x_0 + 9x_2 \le C$
	- Maximize $x_0 + x_1 + 9x_2 \rightarrow x_0 + x_1 + 9x_2 = 2C$

$$
-9x_2=C
$$

$$
x_0 = 0, x_1 = C, x_2 = C/9
$$

Pareto Efficiency (Optimality)

- **EXTER A feasible allocation of rates** x_i **is called Pareto-efficient** iff increasing one source must be done at the expense of decreasing some other source
- For a feasible allocation x_i , for every *i*:
- **i** if x_i' $> x_i$ then x'_j $\langle X_j$
- § **Every source has a bottleneck link** (i.e., for every source *i* there exists a link, used by i , which is saturated)

Pareto Efficiency (Optimality)

- State of resource allocation in which there is no alternative state that would make some people better off without making anyone worse off
- In the case of multipe flows, it means that giving higher rate to a flow cannot reduce the throughput of other flows

Allocation Pareto-Efficient?

$$
x_0 = 1, x_1 = 1, x_2 = 2 x_3 = 7
$$
?

$$
x_0 = 1, x_1 = 1, x_2 = 4.5 x_3 = 4.5?
$$

- Both?
- § None?
- § I don't know?

Pareto-Efficient?

$$
x_0 = 0, x_1 = 10, x_2 = 10/9?
$$

$$
x_0 = 0.55, x_1 = 9.45, x_2 = 1.05?
$$

$$
x_0 = 1, x_1 = 9, x_2 = 1?
$$

Pareto Efficiency

- § The Pareto efficient allocations are the ones that **use the resources maximally**
- Maximal efficiency means Pareto optimality.
- Maximizing total throughput is Pareto optimal, but it means shutting down some flows (x_0) this is at the expense of fairness.
- § Are there Pareto-efficient allocations that are fair? What is fairness?
- Egalitarianism (give each flow the same part) is not Pareto‐efficient

Fairness

- Maximizing network throughput as a primary objective may lead to large unfairness
	- some sources may get a zero throughput
- § Fairness criterion **equal share to all**
	- let allocate the same share to all sources (egalitarianism), e.g., for $n_i=1$
		- $x_i = C/2$
		- $\vartheta_{\text{fair}} = (I + 1)C/2$
	- roughly half of maximal throughput

Fair (equal share)?

- $x_0 = x_1 = x_2 = 0.5$?
- $x_0 = x_1 = x_2 = 1$?
- $x_0 = x_1 = x_2 = 10/9$?

Equal share fairness

- Consider the parking lot scenario for any values of n_i
	- \bullet equal share on link i

•
$$
x_i = C / (n_0 + n_i), i = 1, ..., I
$$

- Extemding that the let decrease $\mathcal{P}(w)$ we have seen that this maximizes throughput)
	- $x_0 = \min C / (n_0 + n_i)$,
- § example
	- $I= 2$, $n_0 = n_1 = 1$, $n_2 = 9$
	- link 2: $x_2 = C / (1 + 9) = 0.1 C$
	- link 1: $x_1 = C / (1 + 1) = 0.5 C$
	- $x_0 = \min (0.5 \, \text{C}, \, 0.1 \, \text{C}) = 0.1 \, \text{C}$
- Allocating equal shares is not a good solution
	- some flows can get more

Example

- § Problem
	- link 1: 0.6 C
		- § underutilized
	- \blacksquare link 2: 1 C

Max-Min Fairness

■ We can increase x_1 without penalty for other flows

- $x_0 = 0.1$ C, $x_1 = 0.9$ C, $x_2 = 0.1$ C
- This allocation is Pareto-efficient!

Max-Min Fairness

- Allocating resources in an equal proportion is not a good solution since some sources can get more that others without decreasing others' shares
- **Max-Min fair allocation**
	- Min: because of the fairness on bottleneck links
	- Max: because we can increase throughput whenever possible
- For every source i , increasing its rate must force the rate of some other (not richer) source *j* to decrease
- An allocation is max-min fair if any rate increase contradicts fairness
- Max-min fair allocation is Pareto-efficient (converse is not true)

Progressive filling

- **Bottleneck link / for source** s
	- link / is saturated: $\sum x_i = C$
	- source s on link / has the maximum rate among all sources using that link
- **Progressive filling allocation**
	- $x_i = 0$
	- increase x_i equally until $\sum x_i = C$
	- rates for the sources that use this link are not increased any more
		- all the sources that do not increase have a bottleneck link (Min)
	- continue increasing the rates for other sources (Max)

Example

- Parking lot scenario
	- $x_i = 0$
	- $x_i = d$ until $n_0 x_0 + n_i x_i = C$
	- bottleneck link for $d_1 = \min (C / (n_0 + n_i))$, source 0 or *i*
		- $x_0 = \min(C / (n_0 + n_i))$
	- increase other sources
		- $x_i = (C n_0 x_0) / n_i$
- In our example
	- $x_0 = 0.1$ C, $x_2 = 0.1$ C
	- $x_1 = 0.9 C$

Max-Min Fair?

- $x_0 = 0$ $x_1 = 10$, $x_2 = 10/9$?
- $x_0 = 1$ $x_1 = 9$ $x_2 = 1$?

Exercise

- $C = 10$
- We have four flows with demands of 2, 2.6, 4, 5
- What is the Max-min allocation to flows?

Exercise

- Two sources 1 and 2 share a capacity link C. The flow x_i of source *i* is limited by
	- $x_i \le r_i$, i = 1, 2
- Let C = 9 Mb/s, $r_1 = 3$ Mb/s, $r_2 = 8$ Mb/s
- Find x_i assuming the allocation is max-min

Proportional Fairness

- Equal share fairness and Max-min fairness
	- per link only
	- do not take into account the number of links used by a flow
	- flows x_0 benefit from more network resources than flows x_i
- **Another fairness**
	- § give higher throughput to flows that use less resources
	- § give smaller throughput to flows that use more resources
- Proportional fairness

Proportional Fairness

An allocation of rates x_s is *proportionally fair* if and only if, for any other feasible allocation y_s we have (S sources)

$$
\sum_{s=1}^{S} \frac{y_s - x_s}{x_s} \le 0
$$

- Any change in the allocation must have a negative average change
- Parking lot example with $n_s = 1$
	- max-min fair allocation $x_s = C/2$ for all s
	- let decrease x_0 by δ : $y_0 = C/2 \delta$, $y_s = C/2 + \delta$, $s = 1, ..., I$
	- average rate of change is positive not proportionally fair for $I \geq 2!$

$$
\left(\sum_{s=1}^{I} \frac{2\delta}{c}\right) - \frac{2\delta}{c} = \frac{2(I-1)\delta}{c}
$$

Proportional Fairness

• There exists one unique proportionally fair allocation. It is obtained by maximizing

$$
J(\vec{x}) = \sum_{s} \ln(x_s)
$$

over the set of feasible allocations for all sources s

Parking lot example

- For any choice of x_0 we should set x_i such that
	- $n_0 x_0 + n_i x_i = C_i i = 1, ..., I$
- § Maximize

$$
f(x_0) = n_0 \ln(x_0) + \sum_{i=1}^{I} n_i (\ln(C - n_0 x_0) - \ln(n_i))
$$

over the set $0 \leq x_0 \leq C / n_0$.

 \blacksquare The maximum is for

$$
x_0 = \frac{C}{\sum_{i=0}^{L} n_i} \qquad x_i = \frac{C - n_0 x_0}{n_i}
$$

If $n_i = 1$, $x_0 = C/(I+1)$, $x_i = C/(I+1)$

 \blacksquare Max-min allocation is $C/2$ for all rates - sources of type 0 get a smaller rate, since they use more network resources

Proportionally Fair?

$$
x_0 = 1 \ x_1 = 9 \ x_2 = 1?
$$

• $x_0 = 0.909$ $x_1 = 9.091$ $x_2 = 1.010$?

Comparisons

- $I = 2, n_i = 1$
- max throughput:
	- $x_0 = 0$, throughput = 2C
- equal-share and max-min:
	- $x_0 = C/2$, $x_i = C/2$, throughput = 1.5C
- **•** proportional fairness:
	- $x_0 = C/3$, $x_i = 2C/3$, throughput = 5C/3

End-to-end congestion control

- End-to-end congestion control
	- binary feedback from the network: congestion or not
	- rate adaptation mechanism: decrease or increase
- Modeling
	- **•** I sources, rate $x_i(t)$, $i = 1, ..., I$
	- \blacksquare link capacity: C
	- \blacksquare discrete time, feedback cycle = one time unit
	- § during one time cycle, the source rates are constant, and the network generates a binary feedback signal $y(t) \in \{0, 1\}$
	- Sources: increase the rate if $y(t) = 0$ and decrease if $y(t) = 1$
	- feedback

$$
y(t) = \left[\text{if } \left(\sum_{i=1}^{I} x_i(t) \le c \right) \text{ then } 0 \text{ else } 1 \right]
$$

Linear adaptation algorithm

Find constants u_0 , u_1 , v_0 , v_1 , such that

$$
x_i(t+1) = u_{y(t)}x_i(t) + v_{y(t)}
$$

- we want to converge towards a fair allocation
- one single bottleneck, so all fairness criteria are equivalent
- we should have $x_i = C/I$
- the total throughput

$$
f(t) = \sum_{i=1}^{t} x_i(t)
$$

I

should oscillate around C : it should remain below C until it exceeds it once, then return below C

Linear adaptation algorithm

Necessary conditions

$$
f(t+1) = u_{y(t)} f(t) + v_{y(t)}
$$

§ we must have

 u_0 f + $v_0 > f$, increase rate if feedback 0 u_1 f + v_1 < f, decrease rate if feedback 1

• this gives the following conditions

$$
u_1 < 1 \text{ and } v_1 \leq 0 \tag{A}
$$

or

$$
u_1 = 1 \text{ and } v_1 < 0 \tag{B}
$$

and

$$
u_0 > 1 \text{ and } v_0 \ge 0 \tag{C}
$$

or

$$
u_0 = 1 \text{ and } v_0 > 0 \qquad \qquad (D)
$$

$$
u_1 < 1 \text{ and } v_1 \le 0 \quad \text{(A)}
$$
\nor

\n
$$
u_1 = 1 \text{ and } v_1 < 0 \quad \text{(B)}
$$
\nand

\n
$$
u_0 > 1 \text{ and } v_0 \ge 0 \quad \text{(C)}
$$
\nor

\n
$$
u_0 = 1 \text{ and } v_0 > 0 \quad \text{(D)}
$$
\nhow to decrease rate?

\n
$$
v_1 = 0, u_1 < 1
$$

- When we apply a multiplicative increase or decrease, the unfairness is unchanged
- An additive increase decreases the unfairness, whereas an additive decrease increases the unfairness
- To obtain that unfairness decreases or remains the same, and such that in the long term it decreases
	- **decrease must be multiplicative**
	- $\boldsymbol{\mu}_0 = 1$ increase must be **additive**

Result

■ Fact

- In order to satisfy efficiency and convergence to fairness, we must have a multiplicative decrease (namely, $u_1 < 1$ and $v_1 = 0$ and a non-zero additive component in the increase (namely, $u_0 \geq$ 1 and $v_0 > 0$).
- If we want to favour a rapid convergence towards fairness, then the increase should be additive only (namely, $u_0 = 1$ and $v_0 > 0$).

§ **AIMD - Additive increase, Multiplicative decrease**

• Simple scenario with two sources sharing a bottleneck link of capacity C

Throughput of sources

Different types of CC

■ Router/Switch centric (ATM) ■ Host centric (TCP)

- switch decides which packet transmit or discard
- § switch notifies the source at which rate it should send
- Open loop (ATM)
	- **•** resource reservation
	- admission control

• host observes the network and adjust the rate

- Closed loop with feedback
	- information on congestion state
		- implicit packet loss (TCP)
		- explicit (RTCP)

Different types of CC

- **Rate-based control**
	- negociated with network
	- adjusted if needed
	- § ATM, RTP
- **Window-based control**
	- defines the volume of data to send
	- § TCP

- Open loop implies
	- § Router/Switch centric
	- rate-based control

Facts to remember

- In a packet network, sources should limit their sending rate by taking into consideration the state of the network
- Maximizing network throughput as a primary objective may lead to large unfairness
- Objective of congestion control is to provide both efficiency and some form of fairness
- Fairness can be defined in various ways: equal share, max-min, proportional
- End-to-end congestion control in packet networks is based on binary feedback and the adaptation mechanism of additive increase, multiplicative decrease.