



# <u>Advanced Computer</u> <u>Networks</u>

#### **Congestion control**

Prof. Andrzej Duda duda@imag.fr

http://duda.imag.fr

# <u>Contents</u>

- Objectives of Congestion Control
  - effciency
  - fairness
- Max-min fairness
- Proportional fairness
- Additive increase, multiplicative decrease
- Different forms of congestion control

### **Congestion control**



- How to allocate network resources?
  - link capacity
  - buffers at routers or switches
- What to do when the traffic exceeds link capacity?
  - congestion control

# Performance criteria

- Efficiency
  - best use of allocated resources
  - max throughput 100 % utilization
  - min delay 0 % utilization
- Fairness (équité)
  - fair share to each user
  - different definitions of fairness
    - equal share
    - max-min fairness
    - proportional fairness

#### **Congestion Control - example**



- Sources send as much as possible
- Allocation of throughput
  - if the offered traffic exceeds the capacity of a link, all sources see their traffic reduced in proportion of their offered traffic
  - approximately true if FIFO in routers

# **Throughput allocation**

- Throughput  $x_{ls}$ : source *s* on link /
- Traffic  $\lambda_s$ : generated by source s
  - AllocationOur example: $x_{11} = \min (\lambda_{1r}, C_1)$  $x_{11} = 100$  $x_{22} = \min (\lambda_{2r}, C_2)$  $x_{22} = 1000$  $x_{3i} = \min (x_{iir}, C_3 x_{ii}/(x_{11} + x_{22}))$  $x_{31} = 110 \times 100/1100 = 10$  $x_{41} = \min (x_{31r}, C_4)$  $x_{41} = 10$  $x_{52} = \min (x_{32r}, C_5)$  $x_{52} = 10$ throughput  $\vartheta = x_{41} + x_{52}$ throughput  $\vartheta = 20$  kb/s

#### **Congestion Control - example**



- S<sub>1</sub> sends 10 kb/s because it is competing with S<sub>2</sub> on link 3
- S<sub>2</sub> is limited on link 5 anyway

### **Congestion Control - exemple**

- How to increase throughput?
  - if S<sub>2</sub> is aware of the global situation and if it would cooperate
  - S<sub>2</sub> reduces x<sub>22</sub> to 10 kb/s, because anyway, it cannot send more then 10 kb/s on link 5
  - $x_{31} = 100$  kb/s and  $x_{41} = 100$  kb/s without any penalty for  $S_2$
  - throughput is now  $\vartheta = 110$  kb/s

#### **Congestion Control - exemple**



#### Optimal use of resources

# Efficiency criterion

- In a packet network, sources should limit their sending rate by taking into consideration the state of the network. Ignoring this may put the network into congestion collapse
  - network resources are not used efficiently
  - performance indices perceived by sources are not satisfactory
- One objective of congestion control is to avoid such inefficiencies

#### Efficiency versus Fairness

- Parking lot scenario
  - link capacity: C
  - *n<sub>i</sub>* sources, rate *x<sub>i</sub>*, *i* = 1, ..., *I*
  - traffic on link *i* :  $n_0 x_0 + n_i x_i$



# Maximal throughput

- For given n<sub>0</sub> and x<sub>0</sub>, maximizing throughput requires that
  - $n_i x_i = C n_0 x_0$
- Total throughput, measured at the network output



#### Maximum throughput

- Example
  - $I = 2, n_0 = n_1 = 1, n_2 = 9$
- The value of x<sub>0</sub> for maximum throughput?
  - 1: *C*?
  - 2: 2*C*?
  - 3: 0.1 *C*?
  - 4: None of the above?



#### Maximum throughput

- Find  $x_0 x_1 x_2$  such that:
  - $x_0 + x_1 \leq C \rightarrow x_0 + x_1 = C$
  - $\bullet \quad x_0 + 9x_2 \le C$
  - Maximize  $x_0 + x_1 + 9x_2 \rightarrow x_0 + x_1 + 9x_2 = 2C$

• 
$$9x_2 = C$$

• 
$$x_0 = 0, x_1 = C, x_2 = C/9$$



# Pareto Efficiency (Optimality)

- A feasible allocation of rates x<sub>i</sub> is called Pareto-efficient iff increasing one source must be done at the expense of decreasing some other source
- For a feasible allocation  $x_i$ , for every *i*:
- if  $x_i' > x_i$  then  $x_j' < x_j$
- Every source has a bottleneck link (i.e., for every source *i* there exists a link, used by *i*, which is saturated)

# Pareto Efficiency (Optimality)

- State of resource allocation in which there is no alternative state that would make some people better off without making anyone worse off
- In the case of multipe flows, it means that giving higher rate to a flow cannot reduce the throughput of other flows

#### **Allocation Pareto-Efficient?**

• 
$$x_0 = 1, x_1 = 1, x_2 = 2 x_3 = 7?$$

• 
$$x_0 = 1, x_1 = 1, x_2 = 4.5 x_3 = 4.5$$
?

- Both?
- None?
- I don't know?



#### Pareto-Efficient?

• 
$$x_0 = 0, x_1 = 10, x_2 = 10/9?$$

• 
$$x_0 = 0.55, x_1 = 9.45, x_2 = 1.05?$$

• 
$$x_0 = 1, x_1 = 9, x_2 = 1?$$



# Pareto Efficiency

- The Pareto efficient allocations are the ones that use the resources maximally
- Maximal efficiency means Pareto optimality.
- Maximizing total throughput is Pareto optimal, but it means shutting down some flows (x<sub>0</sub>) this is at the expense of fairness.
- Are there Pareto-efficient allocations that are fair? What is fairness?
- Egalitarianism (give each flow the same part) is not Pareto-efficient

### Fairness

- Maximizing network throughput as a primary objective may lead to large unfairness
  - some sources may get a zero throughput
- Fairness criterion equal share to all
  - let allocate the same share to all sources (egalitarianism), e.g., for n<sub>i</sub> = 1
    - $x_i = C/2$
    - $\vartheta_{fair} = (I+1)C/2$
  - roughly half of maximal throughput

#### Fair (equal share)?

- $x_0 = x_1 = x_2 = 0.5?$
- $x_0 = x_1 = x_2 = 1$ ?
- $x_0 = x_1 = x_2 = 10/9?$



# Equal share fairness

- Consider the parking lot scenario for any values of n<sub>i</sub>
  - equal share on link *i*

• 
$$x_i = C/(n_0 + n_i), i = 1, ..., I$$

- let decrease x<sub>0</sub> to increase *v* (we have seen that this maximizes throughput)
  - $x_0 = \min C / (n_0 + n_j)$ ,
- example
  - $I = 2, n_0 = n_1 = 1, n_2 = 9$
  - link 2:  $x_2 = C/(1+9) = 0.1 C$
  - link 1:  $x_1 = C / (1 + 1) = 0.5 C$
  - $x_0 = \min(0.5 C, 0.1 C) = 0.1 C$
- Allocating equal shares is not a good solution
  - some flows can get more

# **Example**

- Problem
  - link 1: 0.6 C
    - underutilized
  - link 2: 1 *C*



#### Max-Min Fairness

• We can increase  $x_1$  without penalty for other flows

- $x_0 = 0.1 C, x_1 = 0.9 C, x_2 = 0.1 C$
- This allocation is Pareto-efficient!



# Max-Min Fairness

- Allocating resources in an equal proportion is not a good solution since some sources can get more that others without decreasing others' shares
- Max-Min fair allocation
  - Min: because of the fairness on bottleneck links
  - Max: because we can increase throughput whenever possible
- For every source *i*, increasing its rate must force the rate of some other (not richer) source *j* to decrease
- An allocation is max-min fair if any rate increase contradicts fairness
- Max-min fair allocation is Pareto-efficient (converse is not true)

# Progressive filling

- Bottleneck link / for source s
  - link / is saturated:  $\sum x_i = C$
  - source s on link / has the maximum rate among all sources using that link
- Progressive filling allocation
  - $X_i = 0$
  - increase  $x_i$  equally until  $\sum x_i = C$
  - rates for the sources that use this link are not increased any more
    - all the sources that do not increase have a bottleneck link (Min)
  - continue increasing the rates for other sources (Max)

# **Example**

- Parking lot scenario
  - $x_i = 0$
  - $x_i = d$  until  $n_0 x_0 + n_i x_i = C$
  - bottleneck link for  $d_1 = \min(C/(n_0 + n_i))$ , source 0 or *i* 
    - $x_0 = \min(C/(n_0 + n_i))$
  - increase other sources
    - $x_i = (C n_0 x_0) / n_i$
- In our example
  - $x_0 = 0.1 \ C, \ x_2 = 0.1 \ C$
  - $x_1 = 0.9 C$

#### Max-Min Fair?

• 
$$x_0 = 0 \ x_1 = 10, \ x_2 = 10/9?$$

• 
$$x_0 = 1 \ x_1 = 9 \ x_2 = 1$$
?



#### **Exercise**

- C = 10
- We have four flows with demands of 2, 2.6, 4, 5
- What is the Max-min allocation to flows?

#### **Exercise**

- Two sources 1 and 2 share a capacity link C. The flow x<sub>i</sub> of source *i* is limited by
  - $x_i \leq r_i$ , i = 1, 2
- Let C = 9 Mb/s,  $r_1 = 3$  Mb/s,  $r_2 = 8$  Mb/s
- Find x<sub>i</sub> assuming the allocation is max-min

# **Proportional Fairness**

- Equal share fairness and Max-min fairness
  - per link only
  - do not take into account the number of links used by a flow
  - flows x<sub>0</sub> benefit from more network resources than flows x<sub>i</sub>
- Another fairness
  - give higher throughput to flows that use less resources
  - give smaller throughput to flows that use more resources
- Proportional fairness

#### **Proportional Fairness**

 An allocation of rates x<sub>s</sub> is proportionally fair if and only if, for any other feasible allocation y<sub>s</sub> we have (S sources)

$$\sum_{s=1}^{S} \frac{y_s - x_s}{x_s} \le 0$$

- Any change in the allocation must have a negative average change
- Parking lot example with  $n_s = 1$ 
  - max-min fair allocation  $x_s = C/2$  for all s
  - let decrease  $x_0$  by  $\delta$ :  $y_0 = C/2 \delta$ ,  $y_s = C/2 + \delta$ , s = 1, ..., I
  - average rate of change is positive not proportionally fair for  $I \ge 2!$

$$\left(\sum_{s=1}^{I} \frac{2\delta}{c}\right) - \frac{2\delta}{c} = \frac{2(I-1)\delta}{c}$$

39

#### **Proportional Fairness**

There exists one unique proportionally fair allocation.
It is obtained by maximizing

$$J(\vec{x}) = \sum_{s} \ln(x_s)$$

over the set of feasible allocations for all sources s

# Parking lot example

- For any choice of  $x_0$  we should set  $x_i$  such that
  - $n_0 x_0 + n_i x_i = C, i = 1, ..., I$
- Maximize

$$f(x_0) = n_0 \ln(x_0) + \sum_{i=1}^{I} n_i (\ln(C - n_0 x_0) - \ln(n_i))$$

over the set  $0 \le x_0 \le C/n_0$ .

The maximum is for

$$x_{0} = \frac{C}{\sum_{i=0}^{I} n_{i}} \qquad x_{i} = \frac{C - n_{0} x_{0}}{n_{i}}$$

If  $n_i = 1$ ,  $x_0 = C/(I+1)$ ,  $x_i = CI/(I+1)$ 

 Max-min allocation is C/2 for all rates - sources of type 0 get a smaller rate, since they use more network resources

#### **Proportionally Fair?**

• 
$$x_0 = 1 \ x_1 = 9 \ x_2 = 1$$
?

•  $x_0 = 0.909 \ x_1 = 9.091 \ x_2 = 1.010?$ 



### **Comparisons**

- $I = 2, n_i = 1$
- max throughput:
  - $x_0 = 0$ , throughput = 2*C*
- equal-share and max-min:
  - $x_0 = C/2, x_i = C/2$ , throughput = 1.5*C*
- proportional fairness:

• 
$$x_0 = C/3$$
,  $x_i = 2C/3$ , throughput = 5C/3



# End-to-end congestion control

- End-to-end congestion control
  - binary feedback from the network: congestion or not
  - rate adaptation mechanism: decrease or increase
- Modeling
  - *I* sources, rate  $x_i(t)$ , i = 1, ..., I
  - link capacity: C
  - discrete time, feedback cycle = one time unit
  - during one time cycle, the source rates are constant, and the network generates a binary feedback signal  $y(t) \in \{0, 1\}$
  - sources: increase the rate if y(t) = 0 and decrease if y(t) = 1
  - feedback

$$y(t) = [if(\sum_{i=1}^{I} x_i(t) \le c) then \ 0 \ else \ 1]$$

## Linear adaptation algorithm

• Find constants  $u_0$ ,  $u_1$ ,  $v_0$ ,  $v_1$ , such that

$$x_i(t+1) = u_{y(t)} x_i(t) + v_{y(t)}$$

- we want to converge towards a fair allocation
- one single bottleneck, so all fairness criteria are equivalent
- we should have  $x_i = C/I$
- the total throughput

$$f(t) = \sum_{i=1}^{l} x_i(t)$$

T

should oscillate around C: it should remain below C until it exceeds it once, then return below C

## Linear adaptation algorithm



### **Necessary conditions**

$$f(t+1) = u_{y(t)} f(t) + v_{y(t)}$$

we must have

 $u_0 f + v_0 > f_r$  increase rate if feedback 0  $u_1 f + v_1 < f_r$  decrease rate if feedback 1

this gives the following conditions

$$u_1 < 1 \text{ and } v_1 \leq 0$$
 (A)

or

$$u_1 = 1 \text{ and } v_1 < 0$$
 (B)

and

$$u_0 > 1 \text{ and } v_0 \ge 0$$
 (C)

or

$$u_0 = 1 \text{ and } v_0 > 0$$
 (D)

$$\begin{array}{l} x_{2} \\ u_{1} < 1 \mbox{ and } \nu_{1} \leq 0 \ (A) \\ or \\ u_{1} = 1 \mbox{ and } \nu_{1} < 0 \ (B) \\ and \\ u_{0} > 1 \mbox{ and } \nu_{0} \geq 0 \ (C) \\ or \\ u_{0} = 1 \mbox{ and } \nu_{0} > 0 \ (D) \end{array}$$
  
how to decrease rate?  
$$\nu_{1} = 0, \ u_{1} < 1$$







- When we apply a multiplicative increase or decrease, the unfairness is unchanged
- An additive increase decreases the unfairness, whereas an additive decrease increases the unfairness
- To obtain that unfairness decreases or remains the same, and such that in the long term it decreases
  - $v_1 = 0$  decrease must be **multiplicative**
  - $u_0 = 1$  increase must be **additive**

#### <u>Result</u>

#### Fact

- In order to satisfy efficiency and convergence to fairness, we must have a multiplicative decrease (namely,  $u_1 < 1$  and  $v_1 = 0$  and a non-zero additive component in the increase (namely,  $u_0 \ge 1$  and  $v_0 > 0$ ).
- If we want to favour a rapid convergence towards fairness, then the increase should be additive only (namely,  $u_0 = 1$  and  $v_0 > 0$ ).

#### AIMD - Additive increase, Multiplicative decrease



 Simple scenario with two sources sharing a bottleneck link of capacity C

# **Throughput of sources**



# <u>Different types of CC</u>

Router/Switch centric (ATM)
Host centric (TCP)

- switch decides which packet transmit or discard
- switch notifies the source at which rate it should send
- Open loop (ATM)
  - resource reservation
  - admission control

 host observes the network and adjust the rate

- Closed loop with feedback
  - information on congestion state
    - implicit packet loss (TCP)
    - explicit (RTCP)

# Different types of CC

- Rate-based control
  - negociated with network
  - adjusted if needed
  - ATM, RTP

- Window-based control
  - defines the volume of data to send
  - TCP

- Open loop implies
  - Router/Switch centric
  - rate-based control

## Facts to remember

- In a packet network, sources should limit their sending rate by taking into consideration the state of the network
- Maximizing network throughput as a primary objective may lead to large unfairness
- Objective of congestion control is to provide both efficiency and some form of fairness
- Fairness can be defined in various ways: equal share, max-min, proportional
- End-to-end congestion control in packet networks is based on binary feedback and the adaptation mechanism of additive increase, multiplicative decrease.