Data Center Networking

Prof. Andrzej Duda

Cloud Computing - Data Centers

2

What's a Cloud Service Data Center?

- Electrical power and economies of scale determine total data center size: 50,000 – 200,000 servers today
- Servers divided up among hundreds of different services
- Scale-out is paramount: some services have 10s of servers, some have 10s of 1000s

Data Center Costs

Amortized Cost*	Component	Sub-Components
~45%	Servers	CPU, memory, disk
~25%	Power infrastructure	UPS, cooling, power distribution
~15%	Power draw	Electrical utility costs
~15%	Network	Switches, links, transit

*3 yr amortization for servers, 15 yr for infrastructure; 5% cost of money

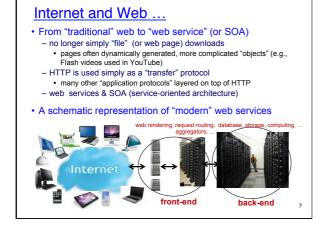
- Total cost varies
 - upwards of \$1/4 B for mega data center
 - server costs dominate
- network costs significant
- Long provisioning timescales:
 - new servers purchased quarterly at best

,

Overall Data Center Design Goal

Agility - Any service, Any Server

- Turn the servers into a single large fungible pool
 - Let services "breathe": dynamically expand and contract their footprint as needed
 - We already see how this is done in terms of Google's GFS, BigTable, MapReduce
- Benefits
- Increase service developer productivity
- -Lower cost
- Achieve high performance and reliability


These are the three motivators for most data center infrastructure projects!

Cloud Computing

- Elastic resources
 - Expand and contract resources
 - Pay-per-use
 - Infrastructure on demand

Multi-tenancy

- Multiple independent users
- Security and resource isolation
- Amortize the cost of the (shared) infrastructure
- Flexibility service management
 - Resiliency: isolate failure of servers and storage
 - Workload movement: move work to other locations

Data Center Network

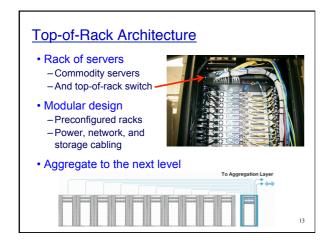
Networking Objectives

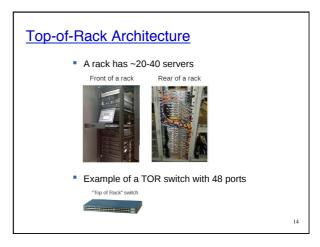
- Uniform high capacity
 Capacity between servers limited only by their NICs
 - No need to consider topology when adding servers => In other words, high capacity between two any servers no matter which racks they are located !
- 2. Performance isolation
 - Traffic of one service should be unaffected by others
- 3. Ease of management: "Plug-&-Play" (layer-2 semantics)
 - Flat addressing, so any server can have any IP address

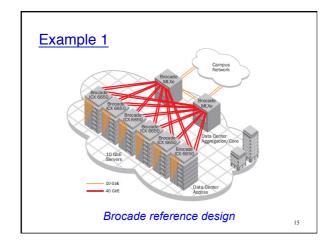
 - Server configuration is the same as in a LAN
 Legacy applications depending on broadcast must work

What goes into a datacenter (network)? Servers organized in racks

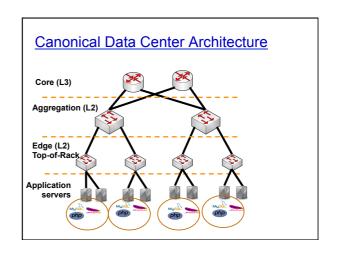
What goes into a datacenter (network)?

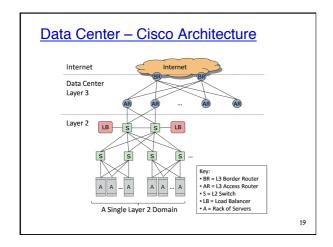

- · Servers organized in racks
- Each rack has a 'Top of Rack' (ToR) switch




What goes into a datacenter (network)?

- · Servers organized in racks
- Each rack has a 'Top of Rack' (ToR) switch
- An 'aggregation fabric' interconnects ToR switches





How big exactly? • 1M servers [Microsoft] -less than Google, more than Amazon • > \$1B to build one site [Facebook] • >\$20M/month/site operational costs [Microsoft '09] But only O(10-100) sites

Example configuration

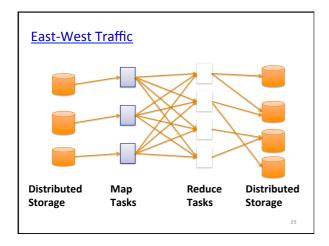
- Data center with 11'520 machines
- Machines organized in racks and rows
 - Data center with 24 rows
 - Each row with 12 racks
 - Each rack with 40 blades
- Machines in a rack interconnected with a ToR switch (access layer) - ToR Switch with 48 GbE ports and 4 10GbE uplinks
- ToR switches connect to End-of-Row (EoR) switches via 1-4 10GigE
- uplinks (aggregation layer)

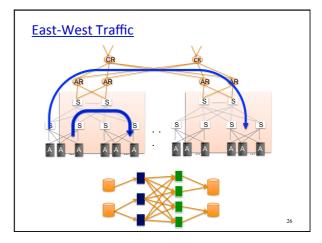
 For fault-tolerance ToR might be connected to EoR switches of different
- EoR switches typically 10GbE
 To support 12 ToR switches EoR would have to have 96 ports (4*12*2)
- Core Switch layer
 12 10GigE switches with 96 ports each (24*48 ports)

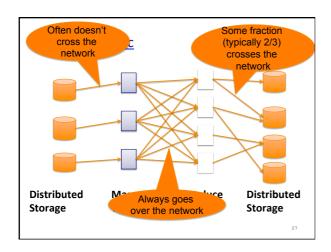
Componentization leads to different types of network traffic

- "North-South traffic"
 - Traffic between external clients and the datacenter
 - Handled by front-end (web) servers, mid-tier application servers, and back-end databases
 - Traffic patterns fairly stable, though diurnal variations

Wide-Area Network **Data Centers** Servers Servers Router Router **DNS** Serve Internet Clients DNS-based site selection 22


North-South Traffic user requests from the Internet Front-End Proxy Front-End Proxy Data Cache


Componentization leads to different types of network traffic


• "North-South traffic"

21

- Traffic between external clients and the datacenter
- Handled by front-end (web) servers, mid-tier application servers, and back-end databases
- Traffic patterns fairly stable, though diurnal variations
- "East-West traffic"
 - Traffic between machines in the datacenter
 - Comm within "big data" computations (e.g. Map Reduce)
 - Traffic may shift on small timescales (e.g., minutes)

What's different about DC networks?

Characteristics

- · Huge scale:
 - -~20,000 switches/routers
 - contrast: AT&T ~500 routers

What's different about DC networks?

Characteristics

- Huge scale:
- · Limited geographic scope:
 - High bandwidth: 10/40/100G
 - Contrast: Cable/aDSL/WiFi
 - -Very low RTT: 10s of microseconds
 - Contrast: 100s of milliseconds in the WAN

What's different about DC networks?

Characteristics

- Huge scale
- · Limited geographic scope
- Single administrative domain
 - -Can deviate from standards, invent your own, etc.
 - "Green field" deployment is still feasible

What's different about DC networks?

Characteristics

- Huge scale
- · Limited geographic scope
- · Single administrative domain
- Control over one/both endpoints
 - -can change (say) addressing, congestion control, etc.
 - can add mechanisms for security/policy/etc. at the endpoints (typically in the hypervisor)

31

What's different about DC networks?

Characteristics

- Huge scale
- · Limited geographic scope
- · Single administrative domain
- · Control over one/both endpoints
- Control over the *placement* of traffic source/sink
 -e.g., map-reduce scheduler chooses where tasks run
 -alters traffic pattern (what traffic crosses which links)

22

What's different about DC networks?

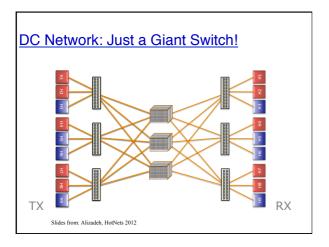
Characteristics

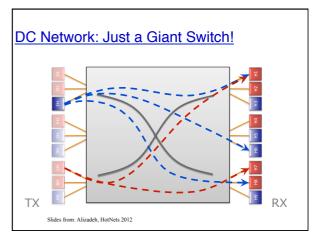
- Huge scale
- · Limited geographic scope
- Single administrative domain
- · Control over one/both endpoints
- Control over the placement of traffic source/sink
- Regular/planned topologies (e.g., trees/fat-trees)
 - Contrast: ad-hoc WAN topologies (dictated by real-world geography and facilities)

33

What's different about DC networks?

Characteristics

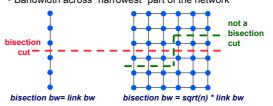

- Huge scale
- Limited geographic scope
- Single administrative domain
- Control over one/both endpoints
- Control over the placement of traffic source/sink
- Regular/planned topologies (e.g., trees/fat-trees)
- Limited heterogeneity
 - -link speeds, technologies, latencies, ...


34

High Bandwidth

- Ideal: Each server can talk to any other server at its full access link rate
- Conceptually: DC network as one giant switch

DC Network: Just a Giant Switch! Slides from: Alizadeh, HotNets 2012

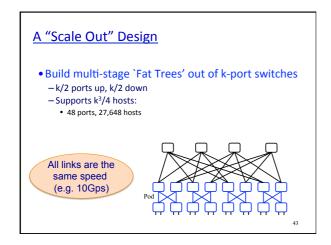


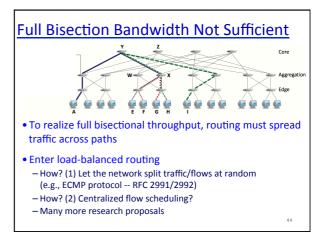
High Bandwidth

- Ideal: Each server can talk to any other server at its full access link rate
- · Conceptually: DC network as one giant switch
 - -Would require a 10 Pbits/sec switch!
 - 1M ports (one port/server)
 - 10Gbps per port
- Practical approach: build a network of switches ("fabric") with high "bisection bandwidth"
 - -Each switch has practical #ports and link speeds

Performance Properties of a Network: Bisection Bandwidth

- Bisection bandwidth: bandwidth across smallest cut that divides network into two equal halves
- · Bandwidth across "narrowest" part of the network




 Why is it relevant: if traffic is completely random, the probability of a message going across the two halves is 1/2 – if all nodes send a message, the bisection bandwidth will have to be N/2

What's different about DC networks?

Goals

- Extreme bisection bandwidth requirements
 - recall: all that east-west traffic
 - -target: any server can communicate at its full link speed
 - problem: server's access link is 10Gbps!

What's different about DC networks?

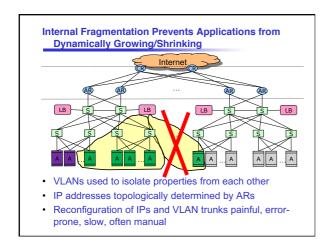
Goals

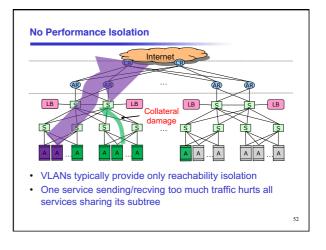
- Extreme bisection bandwidth requirements
- Extreme latency requirements
 - -real money on the line
 - current target: 1µs RTTs
 - -how? cut-through switches making a comeback
 - -how? avoid congestion
 - -how? fix TCP timers (e.g., default timeout is 500ms!)
 - -how? fix/replace TCP to more rapidly fill the pipe

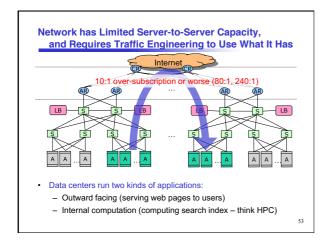
45

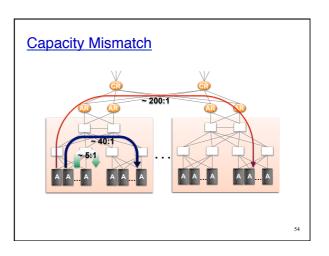
Advanced Data Center Architectures

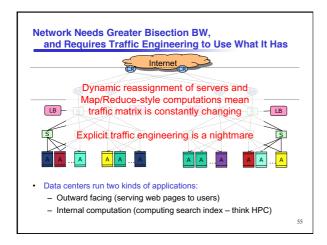
4


Data Center — Cisco Architecture Internet Data Center Layer 3 Layer 2 Layer 3 Layer 3 Layer 2 Layer 3 Layer 2 Layer 3 Layer 2 Layer 3 Layer 3 Layer 2 Layer 3 La

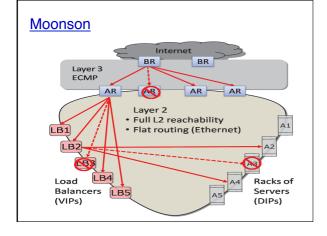

Reminder: Layer 2 vs. Layer 3


- Ethernet switching (layer 2)
 - Cheaper switch equipment
 - Fixed addresses and auto-configuration
 - Seamless mobility, migration, and failover
- IP routing (layer 3)
 - Scalability through hierarchical addressing
 - Efficiency through shortest-path routing
 - Multipath routing through Equal-Cost MultiPath (ECMP)
- So, like in enterprises...
 - Data centers often connect layer-2 islands by IP routers


Load Balancers • Spread load over server replicas - Present a single public address (VIP) for a service - Direct each request to a server replica Virtual IP (VIP) 192.121.10.1 10.10.10.2

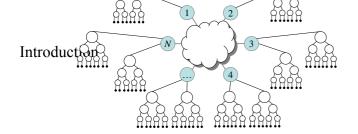

Is current DC Architecture Adequate? Hierarchical network; 1+1 redundancy Equipment higher in the hierarchy handles more traffic more expensive, more efforts made at availability * scale-u Servers connect via 1 Gbps UTP to Top-of-Rack switches Other links are mix of 1G, 10G; fiber, copper Uniform high capacity? Performance isolation? Internet typically via VLANs Data Cente Agility in terms of dynamically adding or Layer 2 LB shrinking servers? Agility in terms of adapting AR = L3 Access to failures, and to traffic Ease of management?

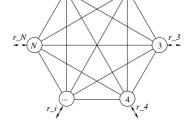
Objectives for the Network of Single Data Center

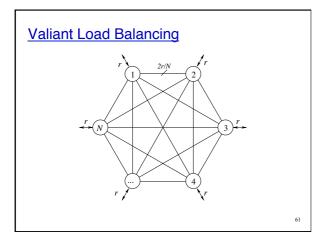

Developers want *network virtualization*: a mental model where all their servers, and only their servers, are plugged into an Ethernet switch

- · Uniform high capacity
 - Capacity between two servers limited only by their NICs
 - No need to consider topology when adding servers
- · Performance isolation
 - Traffic of one service should be unaffected by others
- · Layer-2 semantics
 - Flat addressing, so any server can have any IP address
 - Server configuration is the same as in a LAN
 - Legacy applications depending on broadcast must work

Monsoon

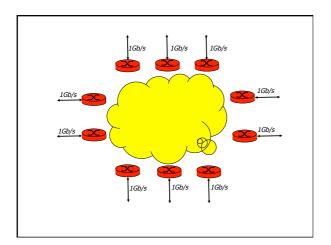

Monsoon approach


- · Layer 2 based using commodity switches
- · Hierarchy has 2 types of switches:
- access switches (top of rack)
- load balancing switches
- · Eliminate spanning tree
 - Flat routing
 - Allows network to take advantage of path diversity
- Prevent MAC address learning
 - Monsoon Agent distribute data plane information
 - TOR: Only need to learn address for the intermediate switches
 - Core: learn for TOR switches
- Support efficient grouping of hosts (VLAN replacement)

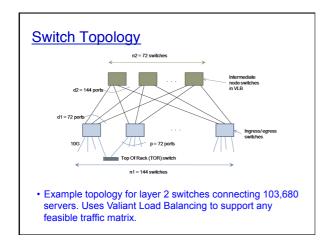


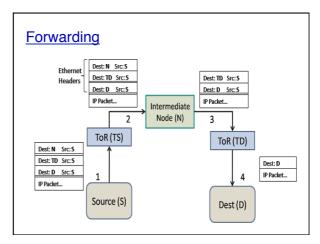
Monsoon Components

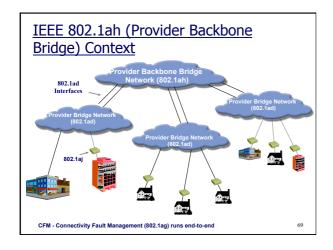
- Top-of-Rack switch:
 - Aggregate traffic from 20 end host in a rack
 - Performs IP to MAC translation
- Intermediate Switch
 - Disperses traffic
 - Balances traffic among switches
 - Used for Valiant load balancing
- Decision Element
- Places routes in switches
- Maintain a directory services of IP to MAC
- Endhos
 - Performs IP to MAC lookup



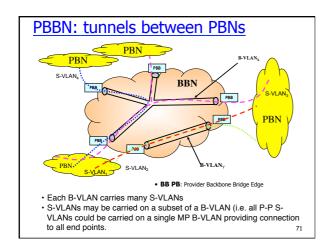
Interconnection structure

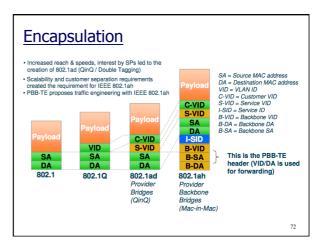

- You must set up a network peering N x N, N = 10, where each connected source can generate traffic up to 1 Gb/s.
- What would be an interconnection structure based Ethernet switches that have the following characteristics:
 - -1 port of 1 Gb/s, 10 ports of 200 Mb/s

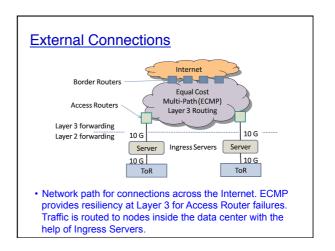


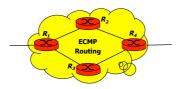

Interconnection structure

- You have N Ethernet switches with 100 ports of 1 Gb/s
- You need to design an interconnection structure that can support any traffic matrix.
- What is the largest single network you can build (maximum number of server-facing ports R)? How many switches N are required to build the largest possible network?

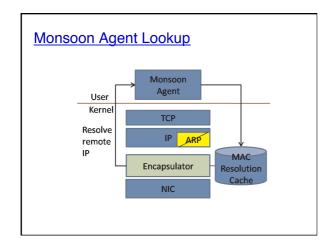








Agreed Terminology IEEE 802.1ad Terminology C-TAG Customer VLAN TAG C-VLAN Customer VLAN C-VID Customer VLAN ID S-TAG Service VLAN TAG S-VLAN Service VLAN Service VLAN ID S-VID Additional Provider Backbone Bridge Terminology • I-TAG Extended Service TAG • I-SID Extended Service ID C-MAC Customer MAC Address B-MAC Backbone MAC Address Backbone VLAN (tunnel) B-VI AN B-TAG Backbone TAG Field B-VID Backbone VLAN ID (tunnel) 73


Equal Cost Multi-Path

- Three packets arrive at R_1 for destination R_4
- P_1 : IP dst= R_4 , TCP dst port=22
- P₂: IP dst=R₄, TCP dst port=80
- P_1 : IP dst= R_4 , TCP dst port=80

How routing works

- End-host checks flow cache for MAC of flow
 - If not found ask monsoon agent to resolve
 - Agent returns list of MACs for server and MACs for intermediate routers
- Send traffic to Top of Router
 - Traffic is triple encapsulated
- Traffic is sent to intermediate destination
- Traffic is sent to Top of Rack switch of destination

