Advanced Computer
Networks

Congestion control in TCP

Prof. Andrzej Duda
duda@imag.fr

http://duda.imag.fr

eeeeeeee

Contents

= Principles

= TCP congestion control states
= Slow Start
= Congestion Avoidance
= Fast Recovery

= TCP fairness

TCP and Congestion Control

= TCP is used to avoid congestion in the Internet

= a TCP source adjusts its sending window to the congestion
state of the network

= this avoids congestion collapse and ensures some fairness
= TCP sources interpret losses as a negative feedback
= used to reduce the sending rate
= Window-based control
= modulate window not rate

Sending window

= Sending window - number of non ACKed bytes
« W = min (cwnd, OfferedWindow)

= cwnd
= congestion window - maintained by TCP source

= OfferedWindow
- announced by destination in TCP header
- flow control
- reflects free buffer space

= Same mechanism used for flow control and for
congestion control

Congestion control states

= TCP connection may be in three states with respect
to congestion

- Slow Start (Démarrage Lent) after loss detected by
retransmission timer

- Fast Recovery (Récupération Rapide) after loss detected
by Fast Retransmit (three duplicated ACKSs)

- Congestion Avoidance (Evitement de Congestion)
otherwise

= Terminology
= ssthresh — target window, same as ssthresh

= flightSize - the amount of data that has been sent but not
yet acknowledged, roughly cwnd

Congestion Control States

connection opening:
ssthresh = 65535 B
cwnd = 1 seg l

cwnd = ssthresh: ;
Slow Start > chqestlon
Avoidance
- exponential - Additive
increase . Tretr. timeout: Increase
A A A
fast fast
retransmit: retransmit:

retr. timeout:

> Fast <
Decrease for ssthresh _
- cwnd = 1 seg - inflate
beyond
. ssthresh .
retr. timeout: expected ack received:

Slow Start

/ * exponential increase for cwnd */

non dupl. ack received during slow start ->

cwnd = cwnd + MSS (in bytes)

if cwnd = ssthresh then transition to
congestion avoidance

= Window increases rapidly up to the value of ssthresh
Not so slow, rather exponential

Slow Start

cwnd—lseg 5678

U

= purpose of this phase: avoid bursts of data at the
beggining or after a retransmission timeout

Increase/decrease

Multiplicative decrease

= ssthresh = 0.5 x flightSize

= ssthresh = max (ssthresh, 2 x MSS)
= cwnd = 1 MSS

Additive increase
= for each ACK

- cwnd = cwnd + MSS x MSS / cwnd

 cwnd = min (cwnd, max-size) (64KB)

= cwnd is in bytes, counting in segments, this means that

- we receive (cwnd/MSS) ACKs per RTT
- for each ACK: cwnd/MSsS < 1/W
- for a full window: W<W + 1 MSS

cwnd Additive Increase

.4 .5

"
i

= during one round trip + interval between packets:
increase by 1 MSS (linear increase)

10

congestion avoidance — in red

flightSize = cwnd

11

Example

Bytes B c
4 ssthresh
60T
I cwnd
301
0 | | | | I g
0 1 2 5 6 7 8 9
seconds

created from data from: IEEE Transactions on
Networking, Oct. 95, “TCP Vegas”, L. Brakmo
and L. Petersen 12

Example

Bytes
ssthresh A B C
4 .
60 +
:: cwnd
30T
0 | | | | | | g
0 1 2 3 4 5 6 7 8 9

seconds
B slow C
congestion avoidancegStarticongestion avoidance

‘&
»q » N

created from data from: IEEE Transactions on
Networking, Oct. 95, “TCP Vegas”, L. Brakmo
and L. Petersen 13

Slow Start and Congestion
Avoidance

B slow C

start
congestion avoidance /congestion avoidance

» gl
gl

\4
A

created from data from: IEEE Transactions on
Networking, Oct. 95, “TCP Vegas”, L. Brakmo
and L. Petersen

Fast Retransmit

P1 P2 P3 P4 P5 P6 P3 P7

AL

Al A2 A2 A2 A2

= Fast Retransmit
retransmit timer can be large
optimize retransmissions similarly to Selective Retransmit

if sender receives 3 duplicated ACKs, retransmit missing
segment

15

Fast Recovery

Concept: cwnd

Problems: !

A

.......................... (initial) ssthresh
After fast retransmit, fast-retransmit

reduce cwnd by half, and \L fast-retransmit
continue sending M \

segments at this reduced il
level. i

Sender has too many !
outstanding segments. ,

How does sender transmit o

timeout

packets on a dupACK? S e -
. I Slow Start 1 1 Congestion Avoidance !
Need to use a “trick” - ' | |

inflate cwnd. resetessitieste it st se et st sanas :

Time

Fast Recovery

Multiplicative decrease
= ssthresh = 0.5 x flightSize
= ssthresh = max (ssthresh, 2 x MSS)

Fast Recovery
cwnd = ssthresh + 3 x MSS (inflate)
= cwnd = min (cwnd, 64K)

= retransmit the missing segment (n)

For each duplicated ACK
= cwnd = cwnd + MSS (keep inflating)

= cwnd = min (cwnd, 64K)

= keep sending segments in the current window

For partial ACK

= retransmit the first unACKed segment
= cwnd = cwnd - ACKed + MSS (deflate/inflate)

17

Fast Recovery Example

Bytes

ssthresh
60 /A Bep
30 I M
o 1
E 0 1

seconds

A-B, E-F: fast recovery
C-D: slow start

TCP Loss - Throughput formulae

_LC
U=T

Va

= TCP connection with
« RTT T
= segment size L
= average packet loss ratio g
= constant C= 1.22

= Transmission time negligible compared to RTT,
losses are rare, time spent in Slow Start and Fast
Recovery negligible

19

Fairness of the TCP

= TCP differs from the pure AI-MD principle
- window based control, not rate based

= increase in rate is not strictly additive - window is increased by 1/
W for each ACK

= Like with proportional fairness, the adaptation
algorithm gives less to sources using many resources
= not the number of links, but RTT

= TCP fairness: negative bias of long round trip times

20

Fairness of the TCP

destination
router ———
1 Mb/s 10 ms

»

8 seg. 8 seqg.

= Example network with two TCP sources
= link capacity, delay
= limited queues on the link (8 segments)

= NS simulation .

Throughput in time

t ACK numbers

time‘

22

Facts to remember

= TCP performs congestion control in end-systems

= sender increases its sending window until loss occurs, then
decreases

= additive increase (no loss)
- multiplicative decrease (loss)

TCP states

= slow start, congestion avoidance, fast recovery
Negative bias towards long round trip times

UDP applications should behave like TCP with the same
loss rate

23

