
1

Advanced Computer
Networks

Congestion control in TCP

http://duda.imag.fr

Prof. Andrzej Duda
duda@imag.fr

2

Contents
§  Principles
§  TCP congestion control states

§  Slow Start
§  Congestion Avoidance
§  Fast Recovery

§  TCP fairness

3

TCP and Congestion Control
§  TCP is used to avoid congestion in the Internet

§  a TCP source adjusts its sending window to the congestion
state of the network

§  this avoids congestion collapse and ensures some fairness

§  TCP sources interpret losses as a negative feedback
§  used to reduce the sending rate

§  Window-based control
§  modulate window not rate

4

Sending window

§  Sending window - number of non ACKed bytes
§  W = min (cwnd, OfferedWindow)

§  cwnd
§  congestion window - maintained by TCP source

§  OfferedWindow
§  announced by destination in TCP header
§  flow control
§  reflects free buffer space

§  Same mechanism used for flow control and for
congestion control

5

Congestion control states
§  TCP connection may be in three states with respect

to congestion
§  Slow Start (Démarrage Lent) after loss detected by

retransmission timer
§  Fast Recovery (Récupération Rapide) after loss detected

by Fast Retransmit (three duplicated ACKs)
§  Congestion Avoidance (Évitement de Congestion)

otherwise

§  Terminology
§  ssthresh – target window, same as ssthresh
§  flightSize - the amount of data that has been sent but not

yet acknowledged, roughly cwnd

6

Congestion Control States

Slow Start

- exponential
increase

Congestion
Avoidance

- Additive
 Increase

Fast
Recovery

- inflate
beyond
ssthresh

retr. timeout:

cwnd = ssthresh:

retr. timeout:

retr. timeout: expected ack received:

fast
retransmit:

fast
retransmit:

-  Multiplicative
Decrease for ssthresh
- cwnd = 1 seg

connection opening:
ssthresh = 65535 B

cwnd = 1 seg

7

Slow Start

/ * exponential increase for cwnd */

 non dupl. ack received during slow start ->

 cwnd = cwnd + MSS (in bytes)
 if cwnd = ssthresh then transition to
congestion avoidance

§  Window increases rapidly up to the value of ssthresh
Not so slow, rather exponential

8

Slow Start

§  purpose of this phase: avoid bursts of data at the
beggining or after a retransmission timeout

3 2 5 cwnd = 1 seg 4 6 7 8

9

Increase/decrease
§  Multiplicative decrease

§  ssthresh = 0.5 × flightSize
§  ssthresh = max (ssthresh, 2 × MSS)
§  cwnd = 1 MSS

§  Additive increase
§  for each ACK

§  cwnd = cwnd + MSS × MSS / cwnd
§  cwnd = min (cwnd, max-size) (64KB)

§  cwnd is in bytes, counting in segments, this means that
§  we receive (cwnd/MSS) ACKs per RTT
§  for each ACK: cwnd/MSS ← 1/W
§  for a full window: W←W + 1 MSS

10

cwnd Additive Increase

§  during one round trip + interval between packets:
increase by 1 MSS (linear increase)

=

4 seg

5 4 6

11

Example

time

cwnd

Loss, e.g. timeout

slow start – in bleu

congestion avoidance – in red

(initial) ssthresh

flightSize = cwnd

12

Example

created from data from: IEEE Transactions on
Networking, Oct. 95, “TCP Vegas”, L. Brakmo
and L. Petersen

ssthresh

cwnd

A B C

0 1 2 3 4 5 6 7 8 9

60

30

0

Bytes

seconds

13

 Example

created from data from: IEEE Transactions on
Networking, Oct. 95, “TCP Vegas”, L. Brakmo
and L. Petersen

0 1 2 3 4 5 6 7 8 9

60

30

0

Bytes

seconds

ssthresh

cwnd

congestion avoidance
slow
start congestion avoidance

A B C

B C

0 1 2 3 4 5 6 7 8 9

60

30

0

Bytes

seconds

14

Slow Start and Congestion
Avoidance

created from data from: IEEE Transactions on
Networking, Oct. 95, “TCP Vegas”, L. Brakmo
and L. Petersen

0 1 2 3 4 5 6 7 8 9

60

30

0

Bytes

seconds

congestion avoidance

slow
start

congestion avoidance

B C

15

×

P1 P2 P3 P4 P5 P6 P3 P7

A1 A2 A2 A2 A2 A?

Fast Retransmit

§  Fast Retransmit
§  retransmit timer can be large
§  optimize retransmissions similarly to Selective Retransmit
§  if sender receives 3 duplicated ACKs, retransmit missing

segment

Fast Recovery

cwnd

Slow Start Congestion Avoidance
Time

“inflating” cwnd with dupACKs

“deflating” cwnd with a new ACK

(ini$al)	ssthresh	

new	ACK		

fast-retransmit	
fast-retransmit	

new	ACK		

$meout	

Concept:	
§  A+er	fast	retransmit,	

reduce	cwnd	by	half,	and	
con:nue	sending	
segments	at	this	reduced	
level.	

Problems:	
§  Sender	has	too	many	

outstanding	segments.	
§  How	does	sender	transmit	

packets	on	a	dupACK?		
Need	to	use	a	“trick”	-	
inflate	cwnd.	

17

Fast Recovery
§  Multiplicative decrease

§  ssthresh = 0.5 × flightSize
§  ssthresh = max (ssthresh, 2 × MSS)

§  Fast Recovery
§  cwnd = ssthresh + 3 × MSS (inflate)
§  cwnd = min (cwnd, 64K)
§  retransmit the missing segment (n)

§  For each duplicated ACK
§  cwnd = cwnd + MSS (keep inflating)
§  cwnd = min (cwnd, 64K)
§  keep sending segments in the current window

§  For partial ACK
§  retransmit the first unACKed segment
§  cwnd = cwnd – ACKed + MSS (deflate/inflate)

18

Fast Recovery Example
ssthresh

cwnd

0 1 2 3 4 5 6

60

30

0

Bytes

seconds

twnd

cwnd

0 1 2 3 4 5 6

60

30

0

Bytes

seconds

E

F

A B C D E F

A-B, E-F: fast recovery
C-D: slow start

19

TCP Loss - Throughput formulae

§  TCP connection with
§  RTT T
§  segment size L
§  average packet loss ratio q
§  constant C = 1.22

§  Transmission time negligible compared to RTT,
losses are rare, time spent in Slow Start and Fast
Recovery negligible

q
C

T
L=θ

20

Fairness of the TCP

§  TCP differs from the pure AI-MD principle
§  window based control, not rate based
§  increase in rate is not strictly additive - window is increased by 1/

W for each ACK

§  Like with proportional fairness, the adaptation
algorithm gives less to sources using many resources
§  not the number of links, but RTT

§  TCP fairness: negative bias of long round trip times

21

Fairness of the TCP

§  Example network with two TCP sources
§  link capacity, delay
§  limited queues on the link (8 segments)

§  NS simulation

router destination
10 Mb/s, 20 ms 1 Mb/s 10 ms

10 Mb/s, 60 ms 8 seg. 8 seg.

S1

S2

22

Throughput in time

time

ACK numbers
S1

S2

23

Facts to remember
§  TCP performs congestion control in end-systems

§  sender increases its sending window until loss occurs, then
decreases

§  additive increase (no loss)
§  multiplicative decrease (loss)

§  TCP states
§  slow start, congestion avoidance, fast recovery

§  Negative bias towards long round trip times
§  UDP applications should behave like TCP with the same

loss rate

