

MPLS

Prof. Andrzej Duda duda@imag.fr

http://duda.imag.fr

1

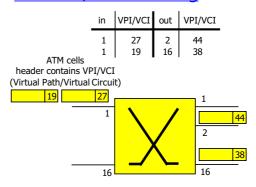
3

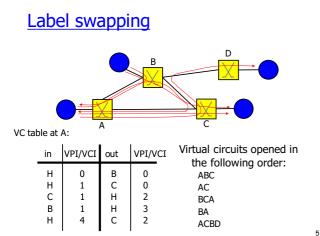
Contents

- MPLS (Multi Protocol Label Switching)
 - Label swapping
 - Elements of MPLS
 - Label switching
 - Label distribution
 - Interaction with IGP
 - Traffic engineering

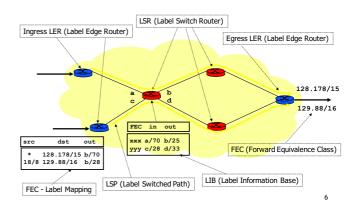
MPLS

IGP limits


- IP routing may ignore the real physical topology
- OSPF algorithms send traffic on a shared path and may ignore unloaded links
- even if load balancing can be done in some cases (Equal Cost)
- Goals of MPLS
 - increase forwarding performance
 - provide more flexibility than IGP routing
 - explicit routing, QoS routingbackup routes, load balancing, VPN
 - multiprotocol a unifying view at 2.5 layer a unified way of
 - controlling the underlying Layer 2 network

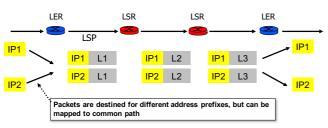

Ethernet, PPP, SDH/DWDM

Virtual Circuits ATM VPI/VCI switching


2

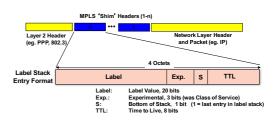
4

MPLS elements


MPLS Principles

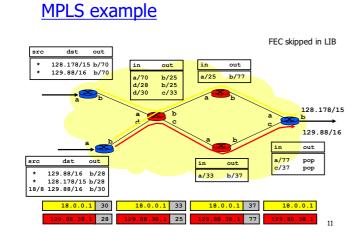
- Labels
 - ingress LER classifies packets to identify FEC that determines a label; inserts the label (32 bits)
 - LSR switches based on the label
 - label swapping label has meaning local to one LSR (requires label distribution protocol)
 - egress LER removes the label
- LSR
 - contains LIB switching table that determines the path in the network (LSP)
 - LSP similar to a ATM/FR virtual circuit
- Change of the forwarding paradigm
 - instead of hop by hop
 - LSP determined at entry in function of FEC, source, or other

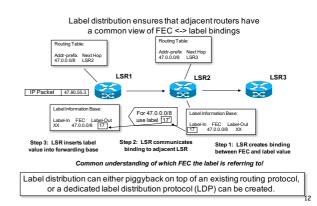
Forwarding Equivalence Classes


- FEC group of IP packets
 - forwarded in the same manner, over the same path, and with the same forwarding treatment
- FEC may correspond to
 - destination IP subnet
 - source and destination IP subnet
 - traffic class that LER considers significant
- For example, all traffic with a certain value of IP precedence may constitute a FEC
 - FEC in our examples
 - IP prefix

Forwarding Equivalence Classes

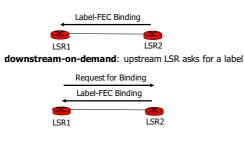
- FEC = "A subset of packets that are all treated the same way by a router"
- Conventional routing: a packet is assigned to a FEC at each hop (i.e. L3 look-up), in MPLS it is only done once at the network ingress


MPLS Encapsulation - PPP & LAN

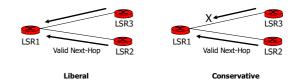

MPLS on PPP links and LANs uses shim header
 inserted between layer 2 and 3 headers

10

8



Label Distribution Protocol (LDP)



Label distribution

- Label distribution is always done from downstream to upstream
 - downstream-unsolicited: new route => send new label

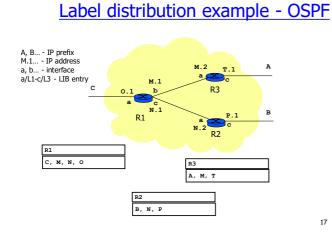
Label retention

- Label retention can be
 - liberal: memorize all labels from downstream LSR (faster)
 - conservative: memorize only selected labels (less memory)

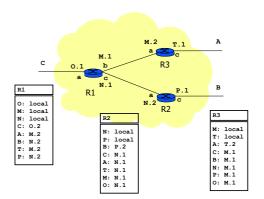
14

16

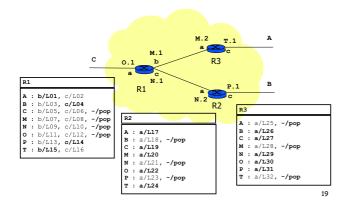
Label control

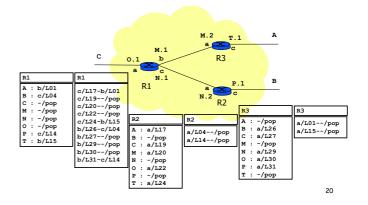


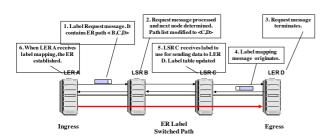
- Label control can be
 - ordered: LSR only binds and advertise a label for a particular FEC if
 - it is the egress LSR for that FEC or
 - · it has already received a label binding from its next-hop
 - LSP formation 'flows' from egress to ingress
 - independent: LSR binds a Label to a FEC independently, whether or not the LSR has received a label from the nexthop for the FEC
 - · LSR then advertises the label to its neighbor
 - · LSP is formed as incoming and outgoing labels are spliced together
- 15


13

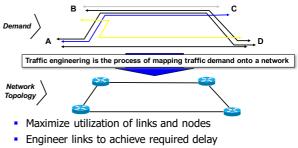
Label distribution


- Different label distribution protocols
- LDP (Label Distribution Protocol) • defined for MPLS
- Extension of BGP
- Extension of RSVP
- RSVP-TE: traditional RSVP + Explicit Route
- CR-LDP (Constraint-Based LDP) LDP + Explicit Route


OSPF - routing tables


Label bindings

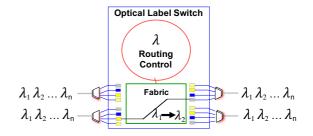
Switching tables



ER-LSP setup using CR-LDP

- Explicit Route setup
 - CR-LDP can also be used to reserve resources • peak rate, committed rate, burst size
- 21

Traffic Engineering with MPLS


- Spread the network traffic across network links, minimize impact of single failure
- Ensure available spare link capacity for re-routing traffic 22

Ethernet PPP ATM Frame Relay

- MPLS offers an end-to-end unifying forwarding paradigm
 MPLS is "multiprotocol" below (link layer) as well as above
 - (network layer)provides for consistent operations, engineering across multiple technologies
 - allows operators to control different technologies in a unified manner

GMPLS/MPλS

- Optical networks such as DWDM
 - λ is just another label to distribute no new protocols required

Facts to remember

- MPLS allows flexible packet classification and network resources optimization
- Labels are distributed by different protocols
 LDP, RSVP, BGP
- Labels have local (LSR) significance
 - no need for global (domain) wide label allocation/numbering
- Different link layer protocols may co-exist in the same LSR